Abstract

Research Article

To legalize cannabis in Ghana or not to legalize? Reviewing the pharmacological evidence

Kwesi Boadu Mensah* and Paa Kofi Tawiah Adu-Gyamfi

Published: 10 December, 2019 | Volume 3 - Issue 1 | Pages: 082-088

Background: Although illegal, Ghana has a long history of cannabis use. With changing perceptions, advocacy for legalization has increased globally. This study exams pharmacological evidence on the prospects and challenges of decriminalization and /or legalization of cannabis in Ghana.

Results: Cannabis and cannabinoids are a “pharmacological enigma” with unique ability to activate at least 3 of the 4 drug receptor super families. This include; inotropic Transient Receptor Potential Vanilloid 1 (TRPV1), metabotropic Cannabinoid Receptors (CB) and nuclear Peroxisome Proliferator Activator Receptors (PPAR). Cannabinoid receptors also dimerize with other receptors creating distinctly new signaling pathways. Cannabis and cannabinoids show good anti- nociceptive, anti-inflammatory, immunosuppressant anti-emetogenic activity and variable anticonvulsant activity. It can play important role in palliative care, some rare intractable epilepsy, multiple sclerosis, cachexia and Opioid Use Disorder. Cannabis precipitates psychosis in individuals with underlying genetic susceptibility. Chronic cannabis use alter the neurobiology of adolescent brain, predisposing them to amotivational syndrome characterized by depersonalization and inhibited motivation for goal directed behavior. Cannabis is also a “gateway drug”; ushering users to “harder” substances of abuse and reinstating extinguished drug seeking behaviours. The recent tramadol abuse in Ghana may have been precipitated by previous and concurrent cannabis use. Furthermore, Ghana’s cannabis may have a higher propensity to induce detrimental effects because of preferential accumulation the psychotropic delta-9-Tetrathydrocannabinol as a result of the high tropical temperature and humidity.

Conclusion: There is not sufficient pharmacological evidence supporting criminalization of medical cannabis in Ghana. However, the same evidence does not support legalization of recreational cannabis.

Read Full Article HTML DOI: 10.29328/journal.apps.1001018 Cite this Article Read Full Article PDF

Keywords:

Medical marijuana; Cannabimimetic; Cannabergics; Sub-Sahara Africa; Cannabinoids

References

  1. Daniulaityte R, Nahhas RW, Wijeratne S, Carlson RG, Lamy FR, et al. “Time for dabs”: Analyzing Twitter data on marijuana concentrates across the US. Drug Alcohol Depend. 2015; 155: 307-311. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26338481
  2. Davenport S, Pardo B.: Reviewing The dangerous drugs act amendment in Jamaica goals, implementation, and challenges. Int J Drug Policy. 2016 1; 37: 60-69. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27596698
  3. Dragone D, Prarolo G, Vanin P, Zanella G. Crime and the legalization of recreational marijuana. J Economic Behavior Organization. 2019; 159: 488-501.
  4. Chappell K. As Jamaica looks to cash in on cannabis, Rastafarians fear being left out Editing by Jumana Farouky and Zoe Tabary. Thomson Reuters. 2019.
  5. World Drug Report United Nations Office on Drugs and Crime. 2019.
  6. World Drug Report Multi-year archive. United Nations Office on Drugs and Crime. 2011.
  7. Bernstein, Henry, Ghana’s drug economy: some preliminary data, Review of African Political Economy79. 1999; 13–32.
  8. Akyeampong E. Diaspora and drug trafficking in West Africa: A case study of Ghana. African Affairs. 2005; 104: 429-447.
  9. WHO Management of substance. WHO Geneva. 2019.
  10. Clarke RC, Watson DP. Botany of natural Cannabis medicines. Cannabis and cannabinoids: pharmacology, toxicology and therapeutic potential. 2002; 3-13.
  11. Hillig KW, Mahlberg PG. A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot. 2004; 91: 966-975. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21653452
  12. Akyeampong E. What is in a drink? Class struggle, popular culture and the politics of akpeteshie (local gin) in Ghana, 1930–1967. J African History. 1996; 37: 215-236.
  13. Borrofica A. Mental illness and Indian hemp in Lagos, Nigeria, East. Afr Med J. 1966; 43: 377–384. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/5965862
  14. Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther. 2012; 133: 79-97. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21924288
  15. Hanuš LO, Meyer SM, Muñoz E, Taglialatela-Scafati O, Appendino G. Phytocannabinoids: a unified critical inventory. Nat Prod Rep. 2016; 33: 1357-1392. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27722705
  16. Gaoni Y, Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc. 1964; 86: 1646-1647.
  17. Mc Partland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Δ9‐tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015; 172: 737-753. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25257544
  18. Puffenbarger RA. Molecular biology of the enzymes that degrade endocannabinoids. Current Drug Targets-CNS & Neurological Disorders. 2005; 4: 625-631.
  19. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992; 258: 1946-1949. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1470919
  20. Liu J, Wang L, Harvey-White J, Huang BX, Kim HY, Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology. 2008; 54: 1-7. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17631919
  21. Sugiura T, Kobayashi Y, Oka S, Waku K. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids. 2002; 66: 173-192. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12052034
  22. Wiley JL, Marusich JA, Huffman JW. Moving around the molecule: relationship between chemical structure and in vivo activity of synthetic cannabinoids. Life Sci. 2014; 97: 55-63. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24071522
  23. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990; 346: 561-564. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2165569
  24. Tanasescu R, Constantinescu CS. Cannabinoids and the immune system: an overview. Immunobiology. 2010; 215: 588-597. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20153077
  25. Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005; 310: 329-332. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16224028
  26. Howlett AC. Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana. Neuropharmacology. 1987; 26: 507-512. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3601007
  27. De Petrocellis L, Orlando P, Moriello AS, Aviello G, Stott C, et al. Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol (Oxf). 2012; 204: 255-266. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21726418
  28. Burstein S. PPAR-γ: a nuclear receptor with affinity for cannabinoids. Life Sci. 2005; 77: 1674-1684. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16005906
  29. Fimiani C, Liberty T, Aquirre AJ, Amin I, Ali N, et al. Opiate, cannabinoid, and eicosanoid signaling converges on common intracellular pathways nitric oxide coupling. Prostaglandins Other Lipid Mediat. 1999; 57: 23-34. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10367294
  30. Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol. 2005; 67: 1697-1704. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15710746
  31. Turcotte D, Dorze JA, Esfahani F, Frost E, Gomori A, et al. Examining the roles of cannabinoids in pain and other therapeutic indications: a review. Expert Opin Pharmacother. 2010; 11: 17-31. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20001426
  32. Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci. 2007; 10: 870-879. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17558404
  33. Twitchell W, Brown S, Mackie K. Cannabinoids inhibit N-and P/Q-type calcium channels in cultured rat hippocampal neurons. Journal of neurophysiology. 1997; 78: 43-50. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9242259
  34. Gerdeman G, Lovinger DM. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol. 2001; 85: 468-471. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11152748
  35. Ottani A, Leone S, Sandrini M, Ferrari A, Bertolini A. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur J Pharmacol. 2006; 531: 280-281. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16438952
  36. Ashton JC. Cannabinoids for the treatment of inflammation. Curr Opin Investig Drugs. 2007; 8: 373-384. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17520866
  37. Bisogno T, Di Marzo V. Cannabinoid receptors and endocannabinoids: role in neuroinflammatory and neurodegenerative disorders. CNS Neurol Disord Drug Targets. 2010; 9: 564-573. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20632970
  38. Zajicek JP, Apostu VI. Role of cannabinoids in multiple sclerosis. CNS Drugs. 2011; 25: 187-201. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21323391
  39. Croxford JL, Yamamura T. Cannabinoids and the immune system: potential for the treatment of inflammatory diseases?. J Neuroimmunol. 2005; 166: 3-18. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16023222
  40. Slatkin NE. Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting: beyond prevention of acute emesis. J Support Oncol. 2007; 5: 1-9. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17566383
  41. Grinspoon L, Bakalar JB. Marihuana as medicine: a plea for reconsideration. JAMA. 1995; 273: 1875-1876. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7776506
  42. Bolognini D, Rock EM, Cluny NL, Cascio MG, Limebeer CL, et al. Cannabidiolic acid prevents vomiting in S uncus murinus and nausea‐induced behaviour in rats by enhancing 5‐HT1A receptor activation. Br J Pharmacol. 2013; 168: 1456-1470. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23121618
  43. Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H. Cannabinoids for cancer treatment: progress and promise. Cancer Res. 2008; 68: 339-342. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18199524
  44. Zhu L X, et al. Δ9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. J. Immunol. 2000; 165: 373–380. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10861074
  45. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One. 2007; 2: 1326. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18094749
  46. Carracedo A, Lorente M, Egia A, Blázquez C, García S, et al. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell. 2006; 9: 301–312. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16616335
  47. McKallip RJ, Nagarkatti M, Nagarkatti PS. Δ9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J. Immunol. 2005; 174: 3281–3289. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15749859
  48. O'Shaughnessy WB: On the preparation of Indian hemp orgunjah.Trans Med Physiol Soc Bengal. 1842; 421-461.
  49. Katona I. Cannabis and endocannabinoid signaling in epilepsy. Handb Exp Pharmacol. 2015; 231: 285-316. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26408165
  50. Chesher GB, Jackson DM. Anticonvulsant effects of cannabinoids in mice: drug interactions within cannabinoids and cannabinoid interactions with phenytoin. Psychopharmacologia. 1974; 37: 255-264. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/4850601
  51. Gordon E, Devinsky O. Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia. 2001; 42: 1266-1272. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11737161
  52. Abel EL. Cannabis: effects on hunger and thirst. Behav Biol. 1975; 15: 255-281. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1106391
  53. Kirkham TC. Cannabinoids and appetite: food craving and food pleasure. Int Rev Psychiatry. 2009; 21: 163-171. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19367510
  54. Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 2001; 134: 1151-1154. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11704633
  55. DiPatrizio NV, Simansky KJ. Activating parabrachial cannabinoid CB1 receptors selectively stimulates feeding of palatable foods in rats. J Neurosci. 2008; 28: 9702-9709. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18815256
  56. McLaughlin CL, Baile CA, Bender PE. Cannabinols and feeding in sheep. Psychopharmacology (Berl). 1979; 64: 321-323. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/116274
  57. Williams CM, Kirkham TC. Reversal of Δ9-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine. Pharmacol Biochem Behav. 2002; 71: 333-340. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11812541
  58. Degenhardt L, Hall W. Is cannabis use a contributory cause of psychosis? Can J Psychiatry. 2006; 51: 556-565. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17007222
  59. Degenhardt L, Hall W, Lynskey M. Testing hypotheses about the relationship between cannabis use and psychosis. Drug Alcohol Depend. 2003; 71: 37-48. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12821204
  60. McGuire PK, Jones P, Harvey I, Williams M, McGuffin P, et al. Morbid risk of schizophrenia for relatives of patients with cannabis-associated psychosis. Schizophr Res. 1995; 15: 277-281. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7632625
  61. Grlic L. A combined spectrophotometric differentiation of samples of cannabis. Bull Narcot. 1968; 20: 25-29.
  62. Pertwee R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008; 153: 199–215. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17828291
  63. Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, et al. Opposite effects of delta-9 tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology. 2010; 35: 764–774. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19924114
  64. Demirakca T, Sartorius A, Ende G, Meyer N, Welzel H, et al. Diminished gray matter in the hippocampus of cannabis users: possible protective effects of cannabidiol. Drug Alcohol Depend. 2011; 114: 242-245. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21050680
  65. Morgan CJ, Curran HV. Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. Br J Psychiatry. 2008; 192: 306–307. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18378995
  66. Di Forti M, Morgan C, Dazzan P, Pariante C, Mondelli V, et al. High-potency cannabis and the risk of psychosis. Br J Psychiatry. 2009; 195: 488–491. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19949195
  67. Van Rossum JM. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966; 160: 492. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/5954044
  68. Spiller KJ, Bi GH, He Y, Galaj E, Gardner EL, et al. Cannabinoid CB1 and CB2 receptor mechanisms underlie cannabis reward and aversion in rats. Br J Pharmacol. 2019; 176: 1268-1281. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30767215
  69. Wenger T, Moldrich G, Furst S. Neuromorphological background of cannabis addiction. Brain research bulletin. 2003; 61: 125-128.
  70. Covey DP, Wenzel JM, Cheer JF. Cannabinoid modulation of drug reward and the implications of marijuana legalization. Brain Res. 2015; 1628: 233-243. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25463025
  71. Fattore L, Fadda P, Fratta W. Endocannabinoid regulation of relapse mechanisms. Pharmacol Res. 2007; 56: 418-427. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17936008
  72. Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002; 296: 678-682. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11976437
  73. Morral AR, McCaffrey DF, Paddock SM. Reassessing the marijuana gateway effect. Addiction. 2002; 97: 1493–1504. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12472629
  74. Kandel DB, ed. Stages and pathways of drug involvement: examining the gateway hypothesis. 2002.
  75. DuPont RL. Getting tough on gateway drugs: a guide for the family. 1984.
  76. Fergusson DM, Boden JM, Horwood LJ. Cannabis use and other illicit drug use: testing the cannabis gateway hypothesis. Addiction. 2006; 101: 556-569. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16548935
  77. Shollenbarger SG, Price J, Wieser J, Lisdahl K. Poorer frontolimbic white matter integrity is associated with chronic cannabis use, FAAH genotype, and increased depressive and apathy symptoms in adolescents and young adults. NeuroImage: Clinical. 2015; 8: 117-125.
  78. Tennant F S, Groesbeck C J. Psychiatric effects of hashish. Archives of General Psychiatry, 1972; 27: 133–136.
  79. McGlothlin WH, West LJ. The marijuana problem: an overview. Am J Psychiatry. 1968; 125: 370-378. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/5667203
  80. Horwood LJ, Fergusson DM, Hayatbakhsh MR, Najman JM, Coffey C, et al. Cannabis use and educational achievement: findings from three Australasian cohort studies. Drug Alcohol Depend. 2010; 110: 247-253. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20456872
  81. Lynskey M, Hall W. The effects of adolescent cannabis use on educational attainment: a review. Addiction. 2000; 95: 1621-1630. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11219366
  82. Bloomfield MA, Morgan CJ, Kapur S, Curran HV, Howes OD. The link between dopamine function and apathy in cannabis users: an [18 F]-DOPA PET imaging study. Psychopharmacology (Berl). 2014; 231: 2251-2259. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24696078

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More