Abstract

Research Article

Medicinal plant extract associated with bacterial cellulose membrane: Antibacterial activity and physicochemical properties

Fernando Batain, Kessi Crescencio, Thais Alves, Juliana Ferreira Souza, Venâncio Amaral, Juliana Castro, Carolina Santos, Angela Jozala, Luciane Lopes* and Marco Chaud*

Published: 04 February, 2020 | Volume 4 - Issue 1 | Pages: 013-020

Burns injuries induce a state of immunodepression that predisposes to a bacterial infectious complication that leads to several comorbid diseases and high mortality rate. Previous studies about anti-inflammatory, antimicrobial and antioxidant properties of Aloe vera (L.) Burm., Calendula officinalis L.and Matricaria recutita L. are acknowledge by antimicrobial effects.

Previous studies about anti-inflammatory, antimicrobial and antioxidant properties of Aloe vera (L.) Burm., Calendula officinalis L. and Matricaria recutita L. are knowledge by antimicrobial effects. Bacterial cellulose membrane (nature BCM) is a potential carrier as a drug delivery system in the wound and burn treatment. The present study aimed to evaluate the antibacterial activity of extracts of A. vera, C. officinalis, and M. recutita incorporated in BCM against bacterial strains commonly present in wound and burns. The agar-dilution susceptibility testing was used to determine the minimum inhibitory concentration (MIC) for S. aureus, E. coli, and P. aeruginosa. The standardized extracts of A. vera, M. recutita, and C. officinalis were, respectively, used at 3.25% of total polysaccharides, 1% of apigenin 7-O-glucoside and 0.084% of total flavonoids expressed in quercetin. The BCM incorporated with A. vera extract was efficient to prevent the growth of P. aeruginosa and S. aureus. BCM loaded with C. officinalis inhibited the growth of S. aureus. The BCM loaded with A. vera and C. officinalis extract showed better antibacterial activities against P. aeruginosa and S. aureus and, consequently, properties to prevent infectious disease in the wound or burn caused by these bacteria.

Read Full Article HTML DOI: 10.29328/journal.apps.1001022 Cite this Article Read Full Article PDF

Keywords:

Bacterial cellulose membranes; Aloe vera. Matricaria recutita. Calendula officinalis; Burn; Wound healing

References

  1. World Health Organization (WHO). Burns.
  2. Duke JM, Randall SM, Wood FM, Boyd JH, Fear MW. Burns and long-term infectious disease morbidity: A population-based study. Burns. 2017; 43: 273–281. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28041752
  3. Hassen AF, Khalifa S Ben, Daiki M. Epidemiological and bacteriological profiles in children with burns. Burns.2014; 40: 1040–1045. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24331406
  4. Anvisa (National Health Surveillance Agency). Normative Instruction No. 5, of December 11, 2008. List of phytotherapeutic drugs of simplified registration. Ministry of Health. BraziL.
  5. Anvisa (National Health Surveillance Agency). Normative Instruction No. 2, of May 13, 2014. List of phytotherapeutic drugs of simplified registration. Ministry of Health. BraziL.
  6. Martins MD, Marques MM, Bussadori SK, Martins MAT, Pavesi VCS, et al. Comparative Analysis between Chamomilla recutita and Corticosteroids on Wound Healing. An in vitro and In Vivo Study. Phyther Res. 2009; 23: 274-278. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18803230
  7. Hu JJ, Cui T, Rodriguez-Gil JL, Allen GO, Li J, et al. Complementary and alternative medicine in reducing radiation-induced skin toxicity. Radiat Environ Biophys. 2014; 53: 621–626. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24792319
  8. Schneider F, Danski MTR, Vayego SA. Usage of calendula officinalis in the prevention and treatment of radiodermatitis: A randomized double-blind controlled clinical triaL. Rev Esc Enferm USP. 2015; 49: 221–228. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25992820
  9. Liu TL, Miao JC, Sheng WH, Xie YF, Huang Q, et al. Cytocompatibility of regenerated silk fibroin film: A medical biomaterial applicable to wound healing. J Zhejiang Univ Sci B. 2010; 11: 10–16. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20043346
  10. Donini ÍAN, De Salvi DTB, Fukumoto FK, Lustri WR, Barud HS, et al. Biosynthesis and recent advances in bacterial cellulose production. Eclect Chem. 2010; 35: 165–178.
  11. Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014; 463: 127–136. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24368109
  12. Jozala AF, de Lencastre-Novaes LC, Lopes AM, de Carvalho Santos-Ebinuma V, Mazzola PG, et al. Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol BiotechnoL. 2016; 100: 2063–2072. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26743657
  13. Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, et al. Alternatives to overcoming bacterial resistances: state-of-the-art. Microbiol Res. 2016; 191: 51-80. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27524653
  14. Rahman H, Chandra A. Microbiologic Evaluation of Matricaria and Chlorhexidine against E. faecalis and C. albicans. Indian J Dent. 2015; 6: 60-64. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26097333
  15. Panghal M, Kaushal V, Yadav JP. in vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases. Ann Clin Microbiol Antimicrob. 2011; 10: 21. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21599889
  16. George D, Bhat SS, Antony B. Comparative evaluation of the antimicrobial efficacy of Aloe vera tooth gel and two popular commercial toothpastes: An in vitro study. Gen Dent. 2009; 57: 238-241. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19819812
  17. Michelin DC, Moreschi PE, Lima AC, Nascimento GGF, Paganelli MO, et al. Evaluation of the antimicrobial activity of vegetal extracts. Brazilian J Pharmacogn. 2005; 15: 316-320.
  18. Abudunia AM, Marmouzi I, Faouzi ME, Ramli Y, Taoufik J, et al. Anticandidal, antibacterial, cytotoxic and antioxidant activities of Calendula arvensis flowers. J Mycol Med. 2017; 27: 90–97. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28011127
  19. Cavalieri SJ, Rankin ID, Harbeck RJ, Sautter RL, McCarter YS, et al. Manual of antimicrobial susceptibility testing. Coyle MB, editor. Seatle, Washington: American Society for Microbiology. 2005; 242.
  20. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Eighth Edition. NCCLS document M2-A8. VoL. 23 No 1. Wayne, Pennsylvania, USA; 2003.
  21. Jozala AF, Pértile RA, dos Santos CA, de Carvalho Santos-Ebinuma V, Seckler MM, et al. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol BiotechnoL. 2014; 99: 1181-1190. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25472434
  22. Shezad O, Khan S, Khan T, Park JK. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym. 2010; 82: 173–180.
  23. Ferro VA, Bradbury F, Cameron P, Shakir E, Rahman SR, et al. in vitro susceptibilities of Shigella flexneri and Streptococcus pyogenes to inner gel of Aloe barbadensis Miller. Antimicrob Agents Chemother. 2003; 47: 1137–1139. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12604556
  24. Arunkumar S, Muthuselvam M. Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J Agric Sci. 2009; 5: 572–576.
  25. Kazemi M. Chemical Composition and Antimicrobial Activity of Essential Oil of Matricaria recutita. Int J Food Prop. 2015; 18: 1784-1792.
  26. Saibuatong O ard, Phisalaphong M. Novo Aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydr Polym. 2010; 79: 455–460.
  27. Brunner G. Hydrothermal and Supercritical Water Processes. VoL. 5. Kiran E, editor. Amsterdam. 2014; 666.
  28. Sekiguchi Y, Sawatari C, Kondo T. A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym. 2003; 53: 145–153.
  29. Oliveira RL, Vieira JG, Barud HS, Assunção RMN, Filho GR, et al. Synthesis and characterization of methylcellulose produced from bacterial cellulose under heterogeneous condition. J Braz Chem Soc. 2015; 26: 1861–1870.
  30. Lim ZX, Cheong KY. Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe vera-based memory devices. Phys Chem Chem Phys. 2015; 17: 26833–26853. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26400096
  31. Balaji A, Jaganathan SK, Supriyanto E, Muhamad II, Khudzari AZM. Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications. Int J Nanomedicine. 2015; 10: 5909–5923. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26425089
  32. Dutta D, Mukherjee R, Patra M, Banik M, Dasgupta R, et aL. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids Surfaces B Biointerfaces. 2016; 147: 45–53. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27478962
  33. Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, et al. Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym. 2011; 83: 1279–1284.
  34. Déléris G, Petibois C. Applications of FT-IR spectrometry to plasma contents analysis and monitoring. Vib Spectrosc. 2003; 32: 129–136.
  35. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH. Bacterial cellulose and bacterial cellulosechitosan membranes for wound dressing applications. Carbohydr Polym. 2013; 94: 603– 611. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23544580
  36. Godinho JF. Bacterial Cellulose Hydrogels Incorporated with Aloe vera Fractions. Florianólis: Federal University of Santa Catarina (UFSC); 2014.
  37. Ray A, Ghosh S, Ray A, Aswatha SM. An analysis of the influence of growth periods on potential functional and biochemical properties and thermal analysis of freeze-dried Aloe vera L. geL. Ind Crops Prod. 2015; 76: 298–305.
  38. Raghavi LM, Moses JA, Anandharamakrishnan C. Refractance window drying of foods: A review. J Food Eng. 2018; 222: 267–275.
  39. Aghamohamadi N, Sanjani NS, Majidi RF, Nasrollahi SA. Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials. Mater Sci Eng C Mater Biol AppL. 2019; 94: 445–452. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30423728
  40. Slavov A, Panchev I, Kovacheva D, Vasileva I. Physico-chemical characterization of water-soluble pectic extracts from Rosa damascena, Calendula officinalis and Matricaria chamomilla wastes. Food HydrocolL. 2016; 61: 469–476.
  41. World Health Organization (WHO). Annex 1 WHO guidelines on good herbal processing practices for herbal medicines. WHO Tech Rep Ser No 1010. 2018; 83–149.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More