Abstract

Research Article

Metabolic profiling and antibacterial activity of Eryngium pristis Cham. & Schltdl. - prospecting for its use in the treatment of bacterial infections

Laura Silva Fernandes, Ygor Ferreira Garcia da Costa, Martha Eunice de Bessa, Adriana Lucia Pires Ferreira, José Otávio do Amaral Corrêa, Glauciemar Del-Vechio Vieira, Orlando Vieira de Sousa, Ana Lúcia Santos de Matos Araújo, Paula C Castilho* and Maria Silvana Alves*

Published: 03 November, 2021 | Volume 5 - Issue 1 | Pages: 020-028

Morbidity and mortality of the infected patients by multidrug-resistant bacteria have increased, emphasizing the urgency of fight for the discovery of new innovative antibiotics. In this sense, natural products emerge as valuable sources of bioactive compounds. Among the biodiversity, Eryngium pristis Cham. & Schltdl. (Apiaceae Lindl.) is traditionally used to treat thrush and ulcers of throat and mouth, as diuretic and emmenagogue, but scarcely known as an antimicrobial agent. With this context in mind, the goals of this study were to investigate the metabolic profile and the antibacterial activity of ethanolic extract (EE-Ep) and hexane (HF-Ep), dichloromethane (DF-Ep), ethyl acetate (EAF-Ep) and butanol (BF-Ep) fractions from E. pristis leaves. Gas Chromatography-Mass Spectrometry (GC-MS) was performed to stablish the metabolic profile and revealed the presence of 12 and 14 compounds in EAF-Ep and HF-Ep, respectively. β-selinene, spathulenol, globulol, 2-methoxy-4-vinylphenol, α-amyrin, β-amyrin, and lupeol derivative were some of phytochemicals identified. The antibacterial activity was determined by Minimal Inhibitory Concentration (MIC) using the broth micro-dilution against eight ATCC® and five methicillin-resistant Staphylococcus aureus (MRSA) clinical strains. HF-Ep was the most effective (MIC ≤ 5,000 µg/µL), being active against the largest part of tested Gram-positive and Gram-negative bacterial strains, including MRSA, with exception of Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 9027) and (ATCC 27853). These results suggest that E. pristis is a natural source of bioactive compounds for the search of new antibiotics which can be an interesting therapeutic approach to recover patients mainly infected by MRSA strains.

Read Full Article HTML DOI: 10.29328/journal.apps.1001027 Cite this Article Read Full Article PDF

Keywords:

Eryngium pristis, Apiaceae, anti bacterial activity, bacterial resistance, Staphy lococcus aureus, Methicillin-resistant Staphy lococcus aureus

References

  1. World Health Organization. Antimicrobial resistance. 2020. PubMed: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance
  2. Shallcross LJ, Davies DSC. Antibiotic overuse: a key driver of antimicrobial resistance. Br J Gen Pract. 2014; 64: 604-605. PubMed: https://pubmed.ncbi.nlm.nih.gov/25452508/
  3. Unemo M, Nicholas RA. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol. 2012; 7: 1401-1422. PubMed: https://pubmed.ncbi.nlm.nih.gov/23231489/
  4. World Health Organization. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis. Geneva: World Health Organization. 2017.
  5. Thabit AK, Crandom JL, Nicolau DP. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin Pharmacother. 2015; 16: 159-177. PubMed: https://pubmed.ncbi.nlm.nih.gov/25496207/
  6. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, et al. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017; 9: e1403. PubMed: https://pubmed.ncbi.nlm.nih.gov/28852600/
  7. Taiwo MO, Adebayo OS. Plant essential oil: an alternative to emerging multidrug resistant pathogens. J Microbiol Exp. 2017; 5: 00163.
  8. Bohlin L, Göransson U, Alsmark C, Wedén C, Backlund A. Natural products in modern life science. Phytochem Rev. 2010; 9: 279-301. PubMed: https://pubmed.ncbi.nlm.nih.gov/20700376/
  9. Sukanya SL, Sudisha J, Hariprasad P, Niranjana SR, Prakash HS, et al. Antimicrobial activity of leaf extracts of Indian medicinal plants against clinical and phytopathogenic bacteria. Afr J Biotechnol. 2009; 8: 6677-6682.
  10. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020; 83: 770-803. PubMed: https://pubmed.ncbi.nlm.nih.gov/32162523/
  11. Igarashi M. New natural products to meet the antibiotic crisis: a personal journey. J Antibiot. 2019.
  12. Chattopadhyay D. Ethnomedicine: A Source of Complementary Therapeutics. Kerala: Research Signpost. 2010.
  13. Abreu AC, McBainb AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 2012; 29: 1007-1021. PubMed: https://pubmed.ncbi.nlm.nih.gov/22786554/
  14. da Silva JB, Bessa ME, Mayorga OAS, Andrade VT, Costa YFG, et al. A promising antibiotic, synergistic and antibiofilm effects of Vernonia condensata Baker (Asteraceae) on Staphylococcus aureus. Micro Pathog. 2018; 123: 385-392. PubMed: https://pubmed.ncbi.nlm.nih.gov/30053603/
  15. Erdem SA, Nabavi SF, Orhan IE, Daglia M, Izadi M, et al. Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. DARU J Pharm Sci. 2015; 23: 53. PubMed: https://pubmed.ncbi.nlm.nih.gov/26667677/
  16. Del-Vechio-Vieira G, Fernandes LS, Santos BCS, Pires AS, Alves MS, et al. Phenolic constituents and biological properties of Eryngium pristis Cham. & Schltdl. (Apiaceae). J Chem Pharm Res. 2015; 7: 151-159.
  17. Berlinck RGS, de Borges WS, Scotti MT, Vieira PC. A química de produtos naturais do Brasil do século XXI. Quím Nova. 2017; 40: 706-710.
  18. Dutra RC, Campos MM, Santos ARS, Calixto JB. Medicinal plants in Brazil: pharmacological studies, drug discovery, challenges and perspectives. Pharmacol Res. 2016; 112: 4-29. PubMed: https://pubmed.ncbi.nlm.nih.gov/26812486/
  19. Olano I, Alonso Paz E, Cerdeiras MP, Fermindez J, Ferreira F, et al. Screening of Uruguayan medicinal plants for antimicrobial activity. Part II. J Ethnopharmacol. 1996; 53: 111-115.
  20. Paul JH, Seaforth CE, Tikasingh T. Eryngium foetidum L.: a review. Fitoterapia 2011; 82: 302-308. PubMed: https://pubmed.ncbi.nlm.nih.gov/21062639/
  21. Wang P, Su Z, Yuan W, Deng G, Li S. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharm Crops. 2012; 3: 99-120.
  22. García-Ruiz I. Contribución al conocimiento del género Eryngium (Apiaceae) en el estado de Michoacán, México. Acta Bot Mex. 2013; 103: 65-118.
  23. Ricardo LM, Paula-Souza J, Andrade A, Brandão MGL. Plants from the Brazilian Traditional Medicine: species from the books of the Polish physician Piotr Czerniewicz (Pedro Luiz Napoleão Chernoviz, 1812-1881). Rev Bras Farmacogn [online]. 2017; 27: 388-400.
  24. Koparde AA, Doijad RC, Magdum CS. Natural products in drug discovery - Chapter. In: Koparde AA, Doijad RC, Magdum CS. Pharmacognosy - Medicinal Plants. Karad: IntechOpen. 2019.
  25. Karimi S, Lotfipour F, Asnaashari S, Asgharian P, Sarvari Y, et al. Phytochemical analysis and anti-microbial activity of some important medicinal plants from north-west of Iran. Iran J Pharm Res. 2019; 18: 1871-1883. PubMed: https://pubmed.ncbi.nlm.nih.gov/32184854/
  26. The Essential Oil Database - EssOilDB, Eryngium sp., Eryngium species. 2020. http://223.31.159.15/cgi-bin/disc/essoildb/search_2.cgi
  27. Daneshzadeh MS, Abbaspour H, Amjad L, Nafchi AM. An investigation on phytochemical, antioxidant and antibacterial properties of extract from Eryngium billardieri Delaroche. J Food Meas Charact. 2019.
  28. Thiem B, Goślińska O, Kikowska M,Budzianowski J. Antimicrobial activity of three Eryngium L. species (Apiaceae). Herba Pol. 2010; 56: 52-58.
  29. Sadiq A, Ahmad S, Ali R, Ahmad F, Ahmad S, et al. Antibacterial and antifungal potentials of the solvents extracts from Eryngium caeruleum, Notholirion thomsonianum and Allium consanguineum. BMC Complement Altern Med. 2016; 16: 478.
  30. Kuete V. Potential of Cameroonian plants and derived products against microbial infections: review. Planta Med. 2010; 76: 1479-1491. PubMed: https://pubmed.ncbi.nlm.nih.gov/20533165/
  31. Zubair M, Ashraf M, Arshad M, Raza A, Mustafa B, et al. Formation and significance of bacterial biofilms. Int J Curr Microbiol App Sci. 2014; 3: 917-923.
  32. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018; 81: 7-11. PubMed: https://pubmed.ncbi.nlm.nih.gov/29042186/
  33. World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Geneva: World Health Organization. 2017.
  34. Sparg SG, Light ME, van Staden J. Biological activities and distribution of plant saponins. J Ethnopharmacol. 2004; 94: 219-243. PubMed: https://pubmed.ncbi.nlm.nih.gov/15325725/
  35. Hinds L, Kenny O, Hossain MB, Walsh D, Sheehy E, et al. Evaluating the antibacterial properties of polyacetylene and glucosinolate compounds with further identification of their presence within various carrot (Daucus carota) and broccoli (Brassica oleracea) cultivars using High-Performance Liquid Chromatography with a Diode Array Detector and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry analyses. J Agr Food Chem. 2017; 65: 7186-7191. PubMed: https://pubmed.ncbi.nlm.nih.gov/28805380/
  36. Pandita N, Apraj V. Isolation and identification of bioactive compounds from Ocimum tenuiflorum Linn for Acne Vulgaris. Indian Patent 684/MUM/2014; 2015.
  37. Ho CL, Wang EIC, Tseng YH, Liao PC, Lin CN, et al. Composition and antimicrobial activity of the leaf ad twig oils of Listea mushaensis and Linii from Taiwan. Nat Prod Commun. 2010; 5: 1823-1828. PubMed: https://pubmed.ncbi.nlm.nih.gov/21213991/
  38. Tan M, Zhou L, Huang Y, Wang Y, Hao X, Wang J. Antimicrobial activity of globulol isolated from the fruits of Eucalyptus globulus Nat Prod Res. 2008; 22: 569-575. PubMed: https://pubmed.ncbi.nlm.nih.gov/18569693/
  39. Kobaisy M, Abramowski Z, Lermer L, Saxena G, Hancock REW, et al. Antimycobacterial polyynes of devil´s club (Oplopanax horridus), a North American native medicinal plant. J Nat Prod. 1997; 60: 1210-1213. PubMed: https://pubmed.ncbi.nlm.nih.gov/9392889/
  40. Cechinel Filho V, Yunes RA. Estratégias para a obtenção de compostos farmacologicamente ativos a partir de plantas medicinais. Conceitos sobre modificação estrutural para otimização da atividade. Quím Nova. 1998; 21: 99-105.
  41. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 4th Illinois: Allured Publishing Corporation. 2007.
  42. Clinical and Laboratory Standards Institute, 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard M07-A9, ninth ed., Wayne, PA.
  43. Clinical and Laboratory Standards Institute, 2014. Performance standards for antimicrobial susceptibility testing; Twenty-Fourth Informational Supplement. CLSI document M100-S24. Wayne, PA.
  44. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001; 48: 5-16.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More