Research Article

Cardioprotective Potentials of Anacardium occidentale Nuts Methanolic Extract in Diabetes-Induced Cardiac Dysfunction in Rats

Folasade Omobolanle Ajao*, Noheem Olaoluwa Kalejaiye, Marcus Olaoye Iyedupe, Sunday Abiodun, Joy Gbadero, Pelumi Ogundele, Zainab Adeagbo, Oluwatosin Ojolo, Enitan Shonde and Funmilayo Elizabeth Olaleye

Published: 15 May, 2024 | Volume 8 - Issue 1 | Pages: 056-066

Background: The unwanted adverse toxicity displayed by synthetic antidiabetic medicine leads to the search for effective natural medicine to combat diabetes complications. This study investigated the cardioprotective of Anacardium occidentale nuts methanolic in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic rats.
Materials and methods: Forty male adult Wistar were used and fed with HFD for 6 weeks before diabetes induction. The rats were grouped into 5 groups, 8 rats/group. Group I: normal control; Group II: diabetic control; Group III & IV: diabetic rats + 100 mg/kgb.wt & 200 mg/kgb.wt Anacardium occidentale nuts methanolic extract; Group V: diabetic rats + 200 mg/kgb.wt metformin. The rats were sacrificed on the experiment’s last day, blood samples were collected and the hearts were isolated for biochemical parameters estimation.
Results: Food intake, water intake, plasmas insulin, Fasting Blood Glucose (FBG), glycosylated hemoglobin (HbA1c), cardiac enzymes, lipid profile, inflammatory cytokines, malondialdehyde, fibrotic marker, caspase-3 in cardiac of diabetic rats were elevated (p < 0.05) significantly. Body weight, cardiac antioxidant, and anti-apoptotic marker levels diminished (p < 0.05) significantly in diabetic rats. 100 mg/kgb.wt & 200 mg/kgb.wt of Anacardium occidentale nuts methanolic extract administration significantly suppressed the plasma insulin, FBG, HbA1c, cardiac lipid profile, cardiac enzymes biomarker, cardiac inflammatory cytokines, cardiac malondialdehyde, cardiac fibrotic marker, cardiac caspase-3, food intake & water intake and increased the body weight, cardiac antioxidant & cardiac anti-apoptotic marker in the diabetic rats.
Conclusion: Anacardium occidentale nuts attenuate cardiac injury in diabetes. It could be a natural medicine to manage diabetes-cardiovascular complications.

Read Full Article HTML DOI: 10.29328/journal.apps.1001057 Cite this Article Read Full Article PDF


Anacardium occidentale nuts; Diabetes mellitus; Oxidative stress & inflammation; Cardiac enzymes & lipid profile; Cardiac apoptosis


  1. Karuranga S, Fernandes J, Huang Y, Malanda B. IDF Diabetes Atlas 2017, 8th ed.; International Diabetes Federation: Brussels, Belgium. 2017; 40–65.
  2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 Jan; 183:109119. doi: 10.1016/j.diabres.2021.109119. Epub 2021 Dec 6. Erratum in: Diabetes Res Clin Pract. 2023 Oct; 204:110945. PMID: 34879977; PMCID: PMC11057359.
  3. Segar MW, Khan MS, Patel KV, Butler J, Tang WHW, Vaduganathan M, Lam CSP, Verma S, McGuire DK, Pandey A. Prevalence and Prognostic Implications of Diabetes with Cardiomyopathy in Community-Dwelling Adults. J Am Coll Cardiol. 2021 Oct 19;78(16):1587-1598. doi: 10.1016/j.jacc.2021.08.020. PMID: 34649696.
  4. International Diabetes Federation (IDF). Diabetes Atlas, seventh ed. International Diabetes Federation, Brussels. 2016. ISBN: 978-2-930229-83-6.
  5. International Diabetes Federation (IDF). IDF Diabetes Atlas, ninth ed. International Diabetes Federation, Brussels, Belgium. 2019; ISBN: 978-2-930229-87-4. https://www.diabetesatlas.org.
  6. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019 Jan;62(1):3-16. doi: 10.1007/s00125-018-4711-2. Epub 2018 Aug 31. PMID: 30171279.
  7. Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020 Sep;17(9):585-607. doi: 10.1038/s41569-020-0339-2. Epub 2020 Feb 20. PMID: 32080423; PMCID: PMC7849055.
  8. Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997;14 Suppl 5:S1-85. PMID: 9450510.
  9. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, Sasapu A, Beebe A, Patil N, Musham CK, Lohani GP, Mirza W. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front Endocrinol (Lausanne). 2017 Jan 24; 8:6. doi: 10.3389/fendo.2017.00006. PMID: 28167928; PMCID: PMC5256065.
  10. Roglic G. WHO Global report on diabetes: A summary. Int.J. Non-communicable Dis. 2016; 1:3.
  11. da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, Guariguata L, Seuring T, Zhang P, Cavan D, Makaroff LE. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract. 2016 Jul; 117:48-54. doi: 10.1016/j.diabres.2016.04.016. Epub 2016 Apr 27. PMID: 27329022.
  12. Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician. 2016 Jan 15;8(1):1832-42. doi: 10.19082/1832. PMID: 26955456; PMCID: PMC4768936.
  13. Jaiswal YS, Tatke PA, Gabhe SY, Vaidya AB. Antidiabetic activity of extracts of Anacardium occidentale leaves on n-streptozotocin diabetic rats. J Tradit Complement Med. 2016 Dec 29;7(4):421-427. doi: 10.1016/j.jtcme.2016.11.007. PMID: 29034189; PMCID: PMC5634720.
  14. Salehi B, Gültekin-Özgüven M, Kırkın C, Özçelik B, Morais-Braga MFB, Carneiro JNP, Bezerra CF, Silva TGD, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M, Yousaf Z, Sharifi-Rad J, Muddathir AM, Devkota HP, Martorell M, Jugran AK, Martins N, Cho WC. AnacardiumPlants: Chemical,Nutritional Composition and Biotechnological Applications. Biomolecules. 2019 Sep 9;9(9):465. doi: 10.3390/biom9090465. PMID: 31505888; PMCID: PMC6769990.
  15. Cordaro M, Siracusa R, Fusco R, D'Amico R, Peritore AF, Gugliandolo E, Genovese T, Scuto M, Crupi R, Mandalari G, Cuzzocrea S, Di Paola R, Impellizzeri D. Cashew (Anacardium occidentale) Nuts Counteract Oxidative Stress and Inflammation in an Acute Experimental Model of Carrageenan-Induced Paw Edema. Antioxidants (Basel). 2020 Jul 24;9(8):660. doi: 10.3390/antiox9080660. PMID: 32722199; PMCID: PMC7465066.
  16. D'Amico R, Cordaro M, Fusco R, Peritore AF, Genovese T, Gugliandolo E, Crupi R, Mandalari G, Caccamo D, Cuzzocrea S, Di Paola R, Siracusa R, Impellizzeri D. Consumption of Cashew (Anacardium occidentale) Nuts Counteracts Oxidative Stress and Tissue Inflammation in Mild Hyperhomocysteinemia in Rats. Nutrients. 2022 Apr 1;14(7):1474. doi: 10.3390/nu14071474. Erratum in: Nutrients. 2023 Dec 30;16(1): PMID: 35406088; PMCID: PMC9002620.
  17. Umbarkar P, Singh S, Arkat S, Bodhankar SL, Lohidasan S, Sitasawad SL. Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy. Free Radic Biol Med. 2015 Oct; 87:263-73. doi: 10.1016/j.freeradbiomed.2015.06.025. Epub 2015 Jun 26. PMID: 26122707.
  18. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972 Jun;18(6):499-502. PMID: 4337382.
  19. Jeong JW, Lee HH, Kim J, Choi EO, Hwang-Bo H, Kim HJ, Kim MY, Ahn KI, Kim GY, Lee KW, Kim KY, Kim SG, Hong SH, Park C, Cha HJ, Choi YH. Mori Folium water extract alleviates articular cartilage damages and inflammatory responses in monosodium iodoacetate‑induced osteoarthritis rats. Mol Med Rep. 2017 Oct;16(4):3841-3848. doi: 10.3892/mmr.2017.7075. Epub 2017 Jul 21. PMID: 29067461; PMCID: PMC5646961.
  20. Rajbhandari J, Fernandez CJ, Agarwal M, Yeap BXY, Pappachan JM. Diabetic heart disease: A clinical update. World J Diabetes. 2021 Apr 15;12(4):383-406. doi: 10.4239/wjd.v12.i4.383. PMID: 33889286; PMCID: PMC8040078.
  21. Wachtel-Galor S, Benzie IFF. Herbal Medicine: An Introduction to Its History, Usage, Regulation, Current Trends, and Research Needs. In: Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Chapter 1. PMID: 22593939.
  22. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014 Jan 10; 4:177. doi: 10.3389/fphar.2013.00177. PMID: 24454289; PMCID: PMC3887317.
  23. Kumar S, Prasad S, Sitasawad SL. Multiple antioxidants improve cardiac complications and inhibit cardiac cell death in streptozotocin-induced diabetic rats. PLoS One. 2013 Jul 2;8(7):e67009. doi: 10.1371/journal.pone.0067009. PMID: 23843977; PMCID: PMC3699585.
  24. Raish M, Ahmad A, Bin Jardan YA, Shahid M, Alkharfy KM, Ahad A, Ansari MA, Abdelrahman IA, Al-Jenoobi FI. Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-κB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats. Biomed Pharmacother. 2022 Jan; 145:112412. doi: 10.1016/j.biopha.2021.112412. Epub 2021 Nov 10. PMID: 34768051.
  25. Greco DS, Bagchi D, Sreejayan N. Diabetes mellitus in animals: Diagnosis and treatment of diabetes mellitus in dogs and cats. In: Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome.Academic Press; Cambridge, MA, USA: 2018, 507–517.
  26. Shirwaikar A, Rajendran K, Barik R. Effect of aqueous bark extract of Garuga pinnata Roxb. in streptozotocin-nicotinamide induced type-II diabetes mellitus. J Ethnopharmacol. 2006 Sep 19;107(2):285-90. doi: 10.1016/j.jep.2006.03.012. Epub 2006 Mar 24. PMID: 16644162.
  27. Asgary S, Naderi G, Sarrafzadegan N, Ghassemi N, Boshtam M, Rafie M, Arefian A. Anti-oxidant effect of flavonoids on hemoglobin glycosylation. Pharm Acta Helv. 1999 Feb;73(5):223-6. doi: 10.1016/s0031-6865(98)00025-9. PMID: 10085787.
  28. Gothandam K, Ganesan VS, Ayyasamy T, Ramalingam S. Antioxidant potential of theaflavin ameliorates the activities of key enzymes of glucose metabolism in high fat diet and streptozotocin - induced diabetic rats. Redox Rep. 2019 Dec;24(1):41-50. doi: 10.1080/13510002.2019.1624085. PMID: 31142215; PMCID: PMC6748596.
  29. Whitsel EA, Boyko EJ, Rautaharju PM, Raghunathan TE, Lin D, Pearce RM, Weinmann SA, Siscovick DS. Electrocardiographic QT interval prolongation and risk of primary cardiac arrest in diabetic patients. Diabetes Care. 2005 Aug;28(8):2045-7. doi: 10.2337/diacare.28.8.2045. PMID: 16043757.
  30. Xi S, Zhou G, Zhang X, Zhang W, Cai L, Zhao C. Protective effect of total aralosides of Aralia elata (Miq) Seem (TASAES) against diabetic cardiomyopathy in rats during the early stage, and possible mechanisms. Exp Mol Med. 2009 Aug 31;41(8):538-47. doi: 10.3858/emm.2009.41.8.059. PMID: 19381071; PMCID: PMC2739893.
  31. Li Y, Gu Y, Song Y. Cardiac functional analysis by electrocardiography, echocardiography, and in situ hemodynamics in streptozotocin-induced diabetic mice. Journal of Health Science.2004; 50(4):356–365.
  32. Annapurna A, Reddy CS, Akondi RB, Rao SR. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2009 Oct;61(10):1365-74. doi: 10.1211/jpp/61.10.0014. PMID: 19814870.
  33. Wichi R, Malfitano C, Rosa K, De Souza SB, Salemi V, Mostarda C, De Angelis K, Irigoyen MC. Noninvasive and invasive evaluation of cardiac dysfunction in experimental diabetes in rodents. Cardiovasc Diabetol. 2007 Apr 26; 6:14. doi: 10.1186/1475-2840-6-14. PMID: 17462095; PMCID: PMC1866223.
  34. Bulani Y, Srinivasan K, Sharma SS. Attenuation of type-1 diabetes-induced cardiovascular dysfunctions by direct thrombin inhibitor in rats: a mechanistic study. Mol Cell Biochem. 2019 Jan;451(1-2):69-78. doi: 10.1007/s11010-018-3394-9. Epub 2018 Jul 3. PMID: 29971544.
  35. Bodor GS. Biochemical Markers of Myocardial Damage. EJIFCC. 2016 Apr 20;27(2):95-111. PMID: 27683523; PMCID: PMC4975226.
  36. Omole JG, Ayoka OA, Alabi QK, Adefisayo MA, Asafa MA, Olubunmi BO, Fadeyi BA. Protective Effect of Kolaviron on Cyclophosphamide-Induced Cardiac Toxicity in Rats. J Evid Based Integr Med. 2018 Jan-Dec; 23:2156587218757649. doi: 10.1177/2156587218757649. PMID: 29468886; PMCID: PMC5871040.
  37. Epshteyn V, Morrison K, Krishnaswamy P, Kazanegra R, Clopton P, Mudaliar S, Edelman S, Henry R, Maisel A. Utility of B-type natriuretic peptide (BNP) as a screen for left ventricular dysfunction in patients with diabetes. Diabetes Care. 2003 Jul;26(7):2081-7. doi: 10.2337/diacare.26.7.2081. PMID: 12832317.
  38. Edet E, Akpanabiatu M, Eno A, Umoh I, Itam E. Effect of Gongronema latifoliumcrude leaf extract on some cardiac enzymes of alloxan-induced diabetic rats. African Journal of Biochemistry Research. 2009; 3: 366–369.
  39. Saklani R, Gupta SK, Mohanty IR, Kumar B, Srivastava S, Mathur R. Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Mol Cell Biochem. 2016 Sep;420(1-2):65-72. doi: 10.1007/s11010-016-2767-1. Epub 2016 Jul 22. PMID: 27443845.
  40. Adoga JO, Channa ML, Nadar A. Kolaviron attenuates cardiovascular injury in fructose-streptozotocin induced type-2 diabetic male rats by reducing oxidative stress, inflammation, and improving cardiovascular risk markers. Biomed Pharmacother. 2021 Dec; 144:112323. doi: 10.1016/j.biopha.2021.112323. Epub 2021 Oct 15. PMID: 34656062.
  41. Ke J, Pan J, Lin H, Gu J. Diabetic cardiomyopathy: a brief summary on lipid toxicity. ESC Heart Fail. 2023 Apr;10(2):776-790. doi: 10.1002/ehf2.14224. Epub 2022 Nov 11. PMID: 36369594; PMCID: PMC10053269.
  42. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015 Apr 15;6(3):456-80. doi: 10.4239/wjd.v6.i3.456. PMID: 25897356; PMCID: PMC4398902.
  43. Yang Z, Zhang L, Liu J, Lu F, Wang L, Chen Y, Li D. Hypoglycemic effects of esculeoside A are mediated via activation of AMPK and upregulation of IRS-1. BMC Complement Altern Med. 2019 Jun 18;19(1):136. doi: 10.1186/s12906-019-2543-3. PMID: 31215434; PMCID: PMC6582491.
  44. Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020 Sep;17(9):585-607. doi: 10.1038/s41569-020-0339-2. Epub 2020 Feb 20. PMID: 32080423; PMCID: PMC7849055.
  45. De Geest B, Mishra M. Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants (Basel). 2022 Apr 15;11(4):784. doi: 10.3390/antiox11040784. PMID: 35453469; PMCID: PMC9030255.
  46. Kaludercic N, Di Lisa F. Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy. Front Cardiovasc Med. 2020 Feb 18; 7:12. doi: 10.3389/fcvm.2020.00012. PMID: 32133373; PMCID: PMC7040199.
  47. Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med. 2021 Jun; 169:317-342. doi: 10.1016/j.freeradbiomed.2021.03.046. Epub 2021 Apr 25. PMID: 33910093; PMCID: PMC8285002.
  48. Senoner T, Dichtl W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients. 2019 Sep 4;11(9):2090. doi: 10.3390/nu11092090. PMID: 31487802; PMCID: PMC6769522.
  49. Gimenes R, Gimenes C, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Guirado GN, Pagan LU, Chaer ID, Fernandes DC, Laurindo FR, Cicogna AC, Okoshi MP, Okoshi K. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovasc Diabetol. 2018 Jan 17;17(1):15. doi: 10.1186/s12933-017-0657-9. PMID: 29343259; PMCID: PMC5771187.
  50. Li R, Liu Y, Shan YG, Gao L, Wang F, Qiu CG. Bailcalin Protects against Diabetic Cardiomyopathy through Keap1/Nrf2/AMPK-Mediated Antioxidative and Lipid-Lowering Effects. Oxid Med Cell Longev. 2019 Jul 1; 2019:3206542. doi: 10.1155/2019/3206542. PMID: 31354905; PMCID: PMC6636513.
  51. Lee TI, Kao YH, Chen YC, Huang JH, Hsiao FC, Chen YJ. Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy. Diabetes Res Clin Pract. 2013 Jun;100(3):330-9. doi: 10.1016/j.diabres.2013.01.008. Epub 2013 Jan 28. PMID: 23369225.
  52. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016 Mar;12(3):144-53. doi: 10.1038/nrendo.2015.216. Epub 2015 Dec 18. PMID: 26678809; PMCID: PMC4753054.
  53. Liang RK, Zhao YY, Shi ML, Zhang G, Zhao YJ, Zhang BG, Liang RJ. Skimmin protects diabetic cardiomyopathy in streptozotocin-induced diabetic rats. Kaohsiung J Med Sci. 2021 Feb;37(2):136-144. doi: 10.1002/kjm2.12305. Epub 2020 Oct 31. PMID: 33128488.
  54. Mohamad HE, Askar ME, Hafez MM. Management of cardiac fibrosis in diabetic rats; the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs). Diabetol Metab Syndr. 2011 Mar 30;3(1):4. doi: 10.1186/1758-5996-3-4. PMID: 21450068; PMCID: PMC3074550.
  55. Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne). 2022 Jun 15; 13:907757. doi: 10.3389/fendo.2022.907757. PMID: 35784531; PMCID: PMC9240190.
  56. Taye A, Abouzied MM, Mohafez OM. Tempol ameliorates cardiac fibrosis in streptozotocin-induced diabetic rats: role of oxidative stress in diabetic cardiomyopathy. Naunyn Schmiedebergs Arch Pharmacol. 2013 Dec;386(12):1071-80. doi: 10.1007/s00210-013-0904-x. Epub 2013 Aug 16. PMID: 23949118.
  57. Qu XF, Zhai BZ, Hu WL, Lou MH, Chen YH, Liu YF, Chen JG, Mei S, You ZQ, Liu Z, Zhang LJ, Zhang YH, Wang Y. Pyrroloquinoline quinone ameliorates diabetic cardiomyopathy by inhibiting the pyroptosis signaling pathway in C57BL/6 mice and AC16 cells. Eur J Nutr. 2022 Jun;61(4):1823-1836. doi: 10.1007/s00394-021-02768-w. Epub 2022 Jan 8. PMID: 34997266; PMCID: PMC9106599.
  58. Tian J, Zhao Y, Liu Y, Liu Y, Chen K, Lyu S. Roles and Mechanisms of Herbal Medicine for Diabetic Cardiomyopathy: Current Status and Perspective. Oxid Med Cell Longev. 2017; 2017:8214541. doi: 10.1155/2017/8214541. Epub 2017 Oct 24. PMID: 29204251; PMCID: PMC5674516.
  59. Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct Types of Cell Death and the Implication in Diabetic Cardiomyopathy. Front Pharmacol. 2020 Feb 7; 11:42. doi: 10.3389/fphar.2020.00042. PMID: 32116717; PMCID: PMC7018666.
  60. Ndebele K, Gona P, Jin TG, Benhaga N, Chalah A, Degli-Esposti M, Khosravi-Far R. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced mitochondrial pathway to apoptosis and caspase activation is potentiated by phospholipid scramblase-3. Apoptosis. 2008 Jul;13(7):845-56. doi: 10.1007/s10495-008-0219-4. PMID: 18491232; PMCID: PMC2941895.
  61. Abukhalil MH, Althunibat OY, Aladaileh SH, Al-Amarat W, Obeidat HM, Al-Khawalde AAA, Hussein OE, Alfwuaires MA, Algefare AI, Alanazi KM, Al-Swailmi FK, Arab HH, Mahmoud AM. Galangin attenuates diabetic cardiomyopathy through modulating oxidative stress, inflammation and apoptosis in rats. Biomed Pharmacother. 2021 Jun; 138:111410. doi: 10.1016/j.biopha.2021.111410. Epub 2021 Mar 19. PMID: 33752930.
  62. Campbell MT, Dagher P, Hile KL, Zhang H, Meldrum DR, Rink RC, Meldrum KK. Tumor necrosis factor-alpha induces intrinsic apoptotic signaling during renal obstruction through truncated bid activation. J Urol. 2008 Dec;180(6):2694-700. doi: 10.1016/j.juro.2008.08.001. Epub 2008 Oct 31. PMID: 18951565; PMCID: PMC2661146.
  63. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008 Oct 27;27(50):6407-18. doi: 10.1038/onc.2008.308. PMID: 18955969; PMCID: PMC2844952.
  64. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019 Mar;20(3):175-193. doi: 10.1038/s41580-018-0089-8. PMID: 30655609; PMCID: PMC7325303.
  65. Rajesh M, Mukhopadhyay P, Bátkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horváth B, Mukhopadhyay B, Becker L, Haskó G, Liaudet L, Wink DA, Veves A, Mechoulam R, Pacher P. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol. 2010 Dec 14;56(25):2115-25. doi: 10.1016/j.jacc.2010.07.033. PMID: 21144973; PMCID: PMC3026637.
  66. ALTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. Esculeoside A Decreases Diabetic Cardiomyopathy in Streptozotocin-Treated Rats by Attenuating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis: Impressive Role of Nrf2. Medicina (Kaunas). 2023 Oct 14;59(10):1830. doi: 10.3390/medicina59101830. PMID: 37893548; PMCID: PMC10608477.


Similar Articles

  • Benefits of using SLGT2 Inhibitors for Patients with CDK and DM2 to Reduce Mortality Risks
    Pandora Eloa Oliveira Fonseca, Jeremias Aguiar Azevedo, Sara Maria Gomes Bié and Sávio Benvindo Ferreira* Pandora Eloa Oliveira Fonseca, Jeremias Aguiar Azevedo, Sara Maria Gomes Bié, Sávio Benvindo Ferreira*. Benefits of using SLGT2 Inhibitors for Patients with CDK and DM2 to Reduce Mortality Risks. . 2024 doi: 10.29328/journal.apps.1001055; 8: 041-046
  • Cardioprotective Potentials of Anacardium occidentale Nuts Methanolic Extract in Diabetes-Induced Cardiac Dysfunction in Rats
    Folasade Omobolanle Ajao*, Noheem Olaoluwa Kalejaiye, Marcus Olaoye Iyedupe, Sunday Abiodun, Joy Gbadero, Pelumi Ogundele, Zainab Adeagbo, Oluwatosin Ojolo, Enitan Shonde and Funmilayo Elizabeth Olaleye Folasade Omobolanle Ajao*, Noheem Olaoluwa Kalejaiye, Marcus Olaoye Iyedupe, Sunday Abiodun, Joy Gbadero, Pelumi Ogundele, Zainab Adeagbo, Oluwatosin Ojolo, Enitan Shonde, Funmilayo Elizabeth Olaleye. Cardioprotective Potentials of Anacardium occidentale Nuts Methanolic Extract in Diabetes-Induced Cardiac Dysfunction in Rats. . 2024 doi: 10.29328/journal.apps.1001057; 8: 056-066

Recently Viewed

  • Hypercalcaemic Crisis Associated with Hyperthyroidism: A Rare and Challenging Presentation
    Karthik Baburaj*, Priya Thottiyil Nair, Abeed Hussain and Vimal MV Karthik Baburaj*, Priya Thottiyil Nair, Abeed Hussain, Vimal MV. Hypercalcaemic Crisis Associated with Hyperthyroidism: A Rare and Challenging Presentation. Ann Clin Endocrinol Metabol. 2024: doi: 10.29328/journal.acem.1001029; 8: 001-003
  • Physicians’ Anxiety Post-COVID Pandemic: A Cross-Sectional Study
    Ismail Hanine*, Mouna Chtibi, Kenza Hajjami, Siham Belbachir, Mohamed Kadiri and Abderrazzak Ouanass Ismail Hanine*, Mouna Chtibi, Kenza Hajjami, Siham Belbachir, Mohamed Kadiri, Abderrazzak Ouanass. Physicians’ Anxiety Post-COVID Pandemic: A Cross-Sectional Study. Arch Psychiatr Ment Health. 2024: doi: 10.29328/journal.apmh.1001054; 8: 032-037
  • Current anesthesıa for Cesarean Sectıon
    Demet Dogan Erol* and Ismail Aytac Demet Dogan Erol*, Ismail Aytac. Current anesthesıa for Cesarean Sectıon. Clin J Obstet Gynecol. 2018: doi: 10.29328/journal.cjog.1001011; 1: 061-066
  • Therapy of Walker Carcinosarcoma with Pectin and Cyclophosphane
    NY Alimzhanov, ISh Chakeev, BN Lepshin, IO Kudaibergenova, BA Shaimurzayeva, LV Serikova and Sh Jorobekova* NY Alimzhanov, ISh Chakeev, BN Lepshin, IO Kudaibergenova, BA Shaimurzayeva, LV Serikova, Sh Jorobekova*. Therapy of Walker Carcinosarcoma with Pectin and Cyclophosphane. J Radiol Oncol. 2023: doi: 10.29328/journal.jro.1001056; 7: 066-070
  • Acute Inflammatory Reaction After Radiotherapy to Bilateral Orbital Metastasis from Melanoma
    Christopher J Issa, Batoul Nasser*, Batoul Mazraani, Kevin T Eid, Bailey Loving and Thomas J Quinn and Muayad F Almahariq Christopher J Issa, Batoul Nasser*, Batoul Mazraani, Kevin T Eid, Bailey Loving, Thomas J Quinn and Muayad F Almahariq. Acute Inflammatory Reaction After Radiotherapy to Bilateral Orbital Metastasis from Melanoma. J Radiol Oncol. 2023: doi: 10.29328/journal.jro.1001054; 7: 056-057

Read More

Most Viewed

Read More

Help ?