Abstract

Research Article

Comparative Activities of Stem Bark Extracts of Anthocleista vogelii, Bligha sapida, Voacanga africana and Momordica charantia Leaf against Plasmodium berghei- berghei in Mice

Samuel Akintunde Odediran* and Adeleke Stephen Adesida

Published: 05 August, 2025 | Volume 9 - Issue 1 | Pages: 031-041

Background: The search for antimalarial molecules from plants necessitates comparative studies of ethnomedicinal antimalarial plants to quickly identify those that may be used in further search. Therefore, the median lethal dose, LD50, and the antiplasmodial activities of the methanol extracts of the stem barks of Anthocleista vogelii, Bligha sapida, Voacanga africana, and the leaf of Momordica charantia were evaluated against Plasmodium berghei berghei-infected mice using prophylactic, chemosuppressive, and curative models to compare their activities and identify the most active for further evaluation. 
Methods: The plant materials were collected, authenticated, and voucher specimens were deposited at the Faculty of Pharmacy Herbarium, OAU, Ile-Ife. They were separately macerated in methanol, and the median lethal dose, LD50 determined using Lorke’s method. The percentage parasitaemia, percentage reduction, chemosuppression and clearance, survival time, and percentage survivor of each, in the three models of antiplasmodial test against Plasmodium berghei berghei infected mice were assessed. Pyrimethamine and Chloroquine were positive controls, while normal saline was a negative control. One-way analysis of variance (ANOVA) followed by Student Newman-Keuls post hoc test (p < 0.05) was used for the analysis of data. 
Results and Conclusion: The lowest prophylactic ED50 and ED90 values 304 and 624 mg/kg of AV, comparable chemosuppressive ED50 values of all extracts and the significantly (p < 0.05) lower values of ED50 and ED90 of MC and VA in the curative assay can guide the selection of the plant extract(s) for further antimalarial evaluation.

Read Full Article HTML DOI: 10.29328/journal.apps.1001068 Cite this Article Read Full Article PDF

Keywords:

Comparative; Antimalarial models; Anthocleista vogelii; Bligha sapida; Voacanga Africana; Momordica charantia

References

  1. Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Rodríguez-Pólit C, et al. Evaluation of biological activity of natural compounds: current trends and methods. Molecules. 2022;27(14):4490. Available from: https://www.mdpi.com/1420-3049/27/14/4490
  2. Kadiri M, Ojewumi AW, Adegboye OO. Folk use of herbal plants used in the treatment of malaria fever in Abeokuta North Local Government, Ogun State, Nigeria. Direct Res J Health Pharmacol. 2013;1(2):10-19. Available from: https://directresearchpublisher.org/drjhp/files/2013/11/Kadiri-et-al.pdf
  3. Odediran SA, Awosode KE, Adegoke TA, Odebunmi KA, Oladunjoye BB, Obasanya AA, et al. Combinations of Chrysophyllum albidum and Citrus aurantifolia as antimalarial agents and their effects on orthodox antimalarial drugs in mice. Ann Complement Altern Med. 2020;2(1):1007. Available from: https://www.remedypublications.com/open-access/combinations-of-chrysophyllum-albidum-and-citrus-aurantifolia-as-antimalarial-agents-5575.pdf
  4. Odediran SA, Elujoba AA, Adebajo CA. Influence of formulation ratio of the plant components on the antimalarial properties of MAMA decoction. Parasitol Res. 2014;113:1977-1984. Available from: https://doi.org/10.1007/s00436-014-3848-2
  5. Adepiti AO, Elujoba AA, Bolaji OO. In vivo antimalarial evaluation of MAMA decoction on Plasmodium berghei in mice. Parasitol Res. 2014;113(2):505-511. Available from: https://doi.org/10.1007/s00436-013-3680-0
  6. Agbedahunsi JM, Elujoba AA, Makinde JM, Oduda AMJ. Antimalarial activity of Khaya grandifoliola stem bark. Pharm Biol. 1998;36(1):8-12. Available from: https://doi.org/10.1076/phbi.36.1.8.4613
  7. Olowokudejo J, Kadiri A, Travih VA. An ethnobotanical survey of herbal markets and medicinal plants in Lagos State of Nigeria. Ethnobot Leafl. 2008;12. Available from: https://opensiuc.lib.siu.edu/ebl/vol2008/iss1/116/
  8. Olorunnisola OS, Adetutu A, Balogun EA, Afolayan AJ. Ethnobotanical survey of medicinal plants used in the treatment of malaria in Ogbomoso, Southwest Nigeria. J Ethnopharmacol. 2013;150(1):71-8. Available from: https://doi.org/10.1016/j.jep.2013.07.038
  9. Assefa A, Fola AA, Tasew G. Emergence of Plasmodium falciparum strains with artemisinin partial resistance in East Africa and the Horn of Africa: is there a need to panic? Malar J. 2024;23:34. Available from: https://doi.org/10.1186/s12936-024-04848-8
  10. Fola AA, Feleke SM, Mohammed H, Brhane BG, Hennelly CM, Assefa A, et al. Plasmodium falciparum resistant to artemisinin and diagnostics have emerged in Ethiopia. Nat Microbiol. 2023;8(10):1911-1919. Available from: https://doi.org/10.1038/s41564-023-01461-4
  11. Alaribe CS, Corker HA, Shode FO. Antiplasmodial and phytochemical investigation of leaf extract of Anthocleista vogelii. J Nat Prod. 2011;(5):60–67.
  12. Olubomehin OO, Abo KA, Ajaiyeoba EO. Alpha-amylase inhibitory activity of two Anthocleista species and in vivo rat model anti-diabetic activities of Anthocleista djalonensis extracts and fractions. J Ethnopharmacol. 2013;146:811–814. Available from: https://doi.org/10.1016/j.jep.2013.02.007
  13. Asamoah A, Antiwi-Bosiako C, Frimpong-Mensah K, Atta-Boateng A, Montes CS, Louppe D. Bligha sapidaD. Koenig. In: Lemmens RHMJ, Louppe D, Oteng-Amoako AA, editors. Prota. 2010;7(2):Timbers/Bois d’œuvre 2 [CD-ROM]. Wageningen: PROTA.
  14. Famuyiwa FG, Famuyiwa SO, Aladesanmi AJ. Activity of the compounds isolated from Blighia sapida (Sapindaceae) stem bark against Aedes aegypti Ife J Sci. 2018;20(3):601. Available from: https://www.researchgate.net/publication/329004921_Activity_of_the_compounds_isolated_from_Blighia_sapida_sapindaceae_stem_bark_against_Aedes_aegypti_larvae
  15. Sinmisola A, Oluwasesan BM, Chukwuemeka AP. Blighia sapidaD. Koenig: a review on its phytochemistry, pharmacological and nutritional properties. J Ethnopharmacol. 2019;235:446–459. Available from: https://doi.org/10.1016/j.jep.2019.01.017
  16. Otegbade OO, Ojo JA, Adefokun DI, Abiodun OO, Thomas BN, Ojurongbe O. Ethanol extract of Blighia sapida stem bark shows remarkable prophylactic activity in experimental Plasmodium berghei-infected mice. Drug Target Insights. 2017;(11):1177392817728725. Available from: https://doi.org/10.1177/1177392817728725
  17. Terashima H, Ichikawa MA. Comparative ethnobotany of the Mbuti and Efe hunter-gatherers in the Ituri Forest, Democratic Republic of Congo. Afr Stud Monogr. 2003;24(1–2):1–168. Available from: https://core.ac.uk/reader/39201366
  18. Federici E, Palazzino G, Galef C, Nicoletti M. Antiplasmodial activity of the alkaloids of Peschiera fuchsiaefolia. Planta Med. 1999;66:93–95. Available from: https://doi.org/10.1055/s-0029-1243122
  19. Ramanitrahasimbola D, Rasoanaivo P, Ratsimamanga-Urverg S, Federici E, Palazzino G, Galeff C, et al. Biological activities of the plant-derived bisindole voacamine with reference to malaria. Phytother Res. 2001;15:30–33. Available from: https://doi.org/10.1002/1099-1573(200102)15:1%3C30::aid-ptr680%3E3.0.co;2-t
  20. Kumar KS, Bhowmik D. Traditional medicinal uses and therapeutic benefits of Momordica charantia Int J Pharm Sci Rev Res. 2010;4:23–28.
  21. National Institutes of Health. Guide for the care and use of laboratory animals. Bethesda (MD): US Dept of Health, Education and Welfare; 1985. NIH Publication No. 85-23.
  22. Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983;54(4):275–287. PMID: 6667118. Available from: https://doi.org/10.1007/bf01234480
  23. Enegide C, David A, Fidelis SA. A new method for determining acute toxicity in animal models. Toxicol Int. 2013;20(3):224–226. Available from: https://doi.org/10.4103/0971-6580.121674
  24. Ryley JF, Peters W. The antimalarial activity of some quinolone esters. Ann Trop Med Parasitol. 1970;64(2):209–222. Available from: https://doi.org/10.1080/00034983.1970.11686683
  25. Peters W. Drug resistance in Plasmodium berghei Vinca and Lips 1948. I: Chloroquine resistance. Exp Parasitol. 1965;17:80–89. Available from: https://doi.org/10.1016/0014-4894(65)90012-3
  26. Geme U, Roselyne TN, Serge RY. Traditional medicinal plant research for the discovery of novel antimalarial compounds – but not only! In: Modern Drugs and Traditional Treatments in the Control of Malaria: Multidisciplinary and Multicultural Approach; Training Workshop. Camerino, Italy. 2008.
  27. Taylor R. Plant drugs that changed the world. London: George Allen and Unwin Ltd; 1965;65.
  28. Achenbach H, Waibel R, Nkunya MHH, Weenen H. Antimalarial compounds from Hoslundia opposita. Phytochemistry. 1992;31(2):3781–3784. Available from: https://www.periodicos.capes.gov.br/index.php/acervo/buscador.html?task=detalhes&id=W2046022302
  29. Khan H, Saeed M, Khan MA, Khan I, Ahmad M, Muhammad N, et al. Antimalarial and free radical scavenging activities of rhizomes of Polygonatum verticillatum supported by isolated metabolites. Med Chem Res. 2012;21(7):1278–1282. Available from: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/1455950
  30. Rukunga G, Simons AJ. The potential of plants as a source of antimalarial agents. A review prepared for the Africa Herbal Antimalarial Meeting. Nairobi: CDE and ICRAF; 2006;1–72.
  31. Okwu D, Uchegbu R. Isolation, characterization and antibacterial activity screening of ethoxyamine tetrahydroxy-anthocyanidines from Detarium senegelense melin stem bark. Afr J Pure Appl Chem. 2009;3(1):1–5. Available from: https://academicjournals.org/article/article1379427842_Okwu%20and%20Uchegbu.pdf
  32. Ferreira LT, Venancio VP, Kawano T, Abrão LCC, Tavella TA, Almeida LD, et al. Chemical genomic profiling unveils the in vitro and in vivo antiplasmodial mechanism of açaí (Euterpe oleracea) polyphenols. ACS Omega. 2019;4:15628–15635. Available from: https://pubs.acs.org/doi/10.1021/acsomega.9b02127
  33. Jemimah Sandra TN, Christelle Nadia NA, Cedric Y, Guy-Armand GN, Azizi MA, Aboubakar Sidiki NN, et al. In vitro and in vivo antimalarial activities of the ethanol extract of Erythrina sigmoidea stem bark used for the treatment of malaria in the Western Region of Cameroon. Front Parasitol. 2024;3:1359442. Available from: https://doi.org/10.3389/fpara.2024.1359442
  34. Muhammad A, Dickson MA, Ndatsu Y, Ibrahim MI. In vivo anti-malarial activities of methanol and aqueous extract of stem bark of Eucalyptus camaldulensis on Plasmodium berghei-berghei. Afr J Biol Chem Phys Sci. 2025;4(1):92–101.
  35. Sidiki NNA, Nadia NAC, Cedric Y, Guy-Armand GN, Sandra TNJ, Kevin TDA, et al. Antimalarial and antioxidant activities of ethanolic stem bark extract of Terminalia macroptera in Swiss albino mice infected with Plasmodium berghei. J Parasitol Res. 2023;3:3350293. Available from: https://doi.org/10.1155/2023/3350293
  36. Kapadia GJ, Angerhofer GK, Ansa-Asamoah R. Akuammine: antimalarial, indole monoterpene alkaloids of Picralima nitida Planta Med. 1993;59(6):565–566. Available from: https://doi.org/10.1055/s-2006-959764
  37. Francois G, Ake AL, Holenz J, Bringmann G. Constituents of Picralima nitida display pronounced inhibitory activity against asexual erythrocytic form of Plasmodium falciparum in vitro. J Ethnopharmacol. 1996;54(2–3):113–117. Available from: https://doi.org/10.1016/s0378-8741(96)01456-0
  38. Prohp TP, Onoagbe IO. Acute toxicity and dose response studies of aqueous and ethanol extracts of Triplochiton scleroxylon Schum (Sterculiaceae). Int J Appl Biol Pharm Technol. 2012;3:400–409. Available from: https://www.fortunejournals.com/ijabpt/pdf/95058-Prohp[2].pdf
  39. Oliver-Bever B. Medicinal plant in tropical West Africa. Cambridge: Cambridge University Press; 1986. p. 89–90. Available from: https://www.scirp.org/reference/referencespapers?referenceid=1615083
  40. Madunagu BE, Ebana RUB, Ekpe ED. Antibacterial and antifungal activity of some medicinal plants of Akwa Ibom State. West Afr J Biol Appl Chem. 1990;35:25–30.
  41. Muñoz V, Sauvain M, Bourdy G, Callapa J, Rojas I, Vargas L, et al. The search for natural bioactive compounds through a multidisciplinary approach in Bolivia. Part II: Antimalarial activities of some plants used by Mosetene Indians. J Ethnopharmacol. 2000;69(2):139–155. Available from: https://doi.org/10.1016/s0378-8741(99)00096-3
  42. Prajapati ND, Purohit SS, Sharma AK, Kumar T. Handbook of medicinal plants. 2nd ed. Jodhpur (India): Agrobios; 2004. Available from: https://agroacademics.com/book_detail.php?bx===AUWZFdV5mTHNlRaNVTWJVU&sdx=
  43. Adejo GO, Atawodi SE. Acute toxicity and genotoxic effects of all parts of Morinda lucida Benth on pUC18 plasmid DNA. Nat Prod Chem Res. 2014;S1. Available from: https://www.iomcworld.com/open-access/acute-toxicity-and-genotoxic-effects-of-all-parts-of-morinda-lucida-benth-on-puc18-plasmid-dna-43246.html
  44. Odeghe OB, Uwakwe A, Monago C. Antiplasmodial activity of methanolic stem bark extract of Anthocleista grandiflora in mice. Int J Appl Sci Technol. 2012;2(4). Available from: https://www.researchgate.net/publication/304351874_Antiplasmodial_activity_of_methanolic_stem_bark_extract_of_Anthocleista_grandiflora_in_Mice
  45. Grosvenor PW, Gothard PK, McWilliam NC, Supriono A, Gray DO. Medicinal plants from Riau Province, Sumatra, Indonesia. Part 1: Uses. J Ethnopharmacol. 1995;45:75–95. Available from: https://doi.org/10.1016/0378-8741(94)01209-i
  46. Peters W, Fleck SS, Robinson BB, Stewart LB, Jefford CW. The chemotherapy of rodent malaria LX. The importance of formulation in evaluating the blood schizontocidal activity of some endoperoxide antimalarials. Ann Trop Med Parasitol. 2002;96:559–573. Available from: https://doi.org/10.1179/000349802125001744
  47. Bello IS, Oduola T, Adeosun OG, Omisore NOA, Raheem GO, Ademosun AA. Evaluation of antimalarial activity of various fractions of Morinda lucida leaf extract and Alstonia boonei stem bark. Glob J Pharmacol. 2009;3(3):163–165. Available from: https://www.researchgate.net/publication/238747087_Evaluation_of_Antimalarial_Activity_of_Various_Fractions_of_Morinda_lucida_Leaf_Extract_and_Alstonia_boonei_Stem_Bark
  48. Arrey Tarkang P, Franzoi KD, Lee S, Lee E, Vivarelli D, Freitas-Junior L, et al. In vitro antiplasmodial activities and synergistic combinations of differential solvent extracts of the polyherbal product, Nefang. Biomed Res Int. 2014:835013. Available from: https://doi.org/10.1155/2014/835013
  49. Habibi P, Shi Y, Grossi-de-Sa MF, Khan I. Plants as sources of natural and recombinant antimalaria agents. Mol Biotechnol. 2022;64(11):1177–1197. Available from: https://doi.org/10.1007/s12033-022-00499-9
  50. Adebajo AC, Odediran SA, Aliyu FA, Nwafor PA, Nwoko NT, Umana US. In vivo antiplasmodial potentials of the combinations of four Nigerian antimalarial plants. Molecules. 2014;19:13136–13146. Available from: https://doi.org/10.3390/molecules190913136
  51. Misganaw D, Amare GG, Mengistu G. Chemo suppressive and curative potential of Hypoestes forskalei against Plasmodium berghei: evidence for in vivo antimalarial activity. J Exp Pharmacol. 2020;12:313–323. Available from: https://doi.org/10.2147/jep.s262026
  52. McNaught AD, Wilkinson A. IUPAC: Compendium of Chemical Terminology. 2nd ed. Oxford: Blackwell Scientific Publications; 1997. Online version (2019) created by Chalk SJ. Available from: https://goldbook.iupac.org/
  53. Mukherjee PK. Quality control of herbal drugs: an approach to evaluation of botanicals. 1st ed. Amsterdam: Elsevier; 2019. p. 784. ISBN: 9780128133743. Available from: https://shop.elsevier.com/books/quality-control-and-evaluation-of-herbal-drugs/mukherjee/978-0-12-813374-3
  54. Umar MB, Ogbadoyi EO, Ilumi JY, Salawu OA, Tijani AY. Antiplasmodial efficacy of methanolic root and leaf extracts of Morinda lucida. J Nat Sci Res. 2013;2:112–121. Available from: https://www.cabidigitallibrary.org/doi/full/10.5555/20133399562
  55. Adepiti AO, Iwalewa EO. Evaluation of the combination of Uvaria chamae (P. Beauv) and amodiaquine in murine malaria. J Ethnopharmacol. 2016;193:30–35. Available from: https://doi.org/10.1016/j.jep.2016.07.035
  56. Adesida SA, Odediran SA, Elujoba AA. Investigation on the antimalarial properties of Plumeria alba Linn (Apocynaceae) cultivated in Nigeria. Nig J Nat Prod Med. 2021;25:34–42. Available from: https://www.researchgate.net/publication/355227995_Investigation_on_the_antimalarial_properties_of_Plumeria_alba_Linn_apocynaceae_cultivated_in_Nigeria
  57. Wargo AR, Huijben S, de Roode JC, Shepherd J, Read AF. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc Natl Acad Sci USA. 2007;104(50):19914–19919. Available from: https://doi.org/10.1073/pnas.0707766104

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?