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ABSTRACT

Aims: To present a further example showing an effi ciency of a modeling method based on the theory of 
dynamic systems in pharmacokinetics. 

Study design: The goals of the current study were twofold: to present (1) a further example showing 
effi ciency of a modeling method based on the theory of dynamic systems in pharmacokinetics, and to perform 
(2) a next step in tutoring the use of computational and modeling tools from the theory of dynamic systems 
in pharmacokinetics. 

The data available in the study by Plusquellec et al. published in the October Issue of the Journal Medical 
Engineering & Physics were used to exemplify the method considered here. For modeling purpose an advanced 
mathematical modeling method was employed. Modeling was performed using the computer program named 
CTDB described in the study by Dedík et al. published in September 2007 issue of the Journal Diabetes 
Research and Clinical Practice. 

Main outcome: Modeling results revealed that computational and modeling tools from the theory of 
dynamic systems can be successfully used in the development of a mathematical model of such a complicated 
process as is a multiple sites discontinuous gastrointestinal absorption.
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INTRODUCTION

Ranitidine is a histamine H2-receptor antagonist with a potent and long-acting 
antisecretory effect in humans that signiϐicantly improves the quality of gastric ulcer 
healing and histological scores of gastric mucosa in patients with gastric ulcers. In 
addition, ranitidine was successfully utilized in the treatment of active duodenal ulcers 
and gastric hypersecretory, where the inhibitory effect of ranitidine on the gastric 
secretion was much longer than that of cimetidine. Ranitidine is a widely used drug and 
is known to be well tolerated by patients. Ranitidine is commonly used in treatment of 
peptic ulcer disease, gastroesophageal reϐlux disease, and Zollinger-Ellison syndrome 
it is possibly more effective than cimetidine [1-10].

The goals of the current study were twofold: 1) to present a further example 
showing efϐiciency of a modeling method based on the theory of dynamic systems in 
pharmacokinetics; 2) to exemplify the modeling method considered here, using the 
data available in the study by Plusquellec et al. published in October 1999 Issue of the 
Journal Medical Engineering & Physics. 

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.hps.1001002&domain=pdf&date_stamp=2017-01-25
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METHODS

The data available in the study cited above employed. For modeling purposes the 
computer program named CTGB described in the study by Dedík et al. published in 
September 2007 issue of the Journal Diabetes Research and Clinical Practice was 
employed.

Throughout the current study, the lower case letter “S” was used for the 
complex Laplace variable [10-24]. The development of a mathematical model of 
the pharmacokinetic behavior of ranitidine [1-9] was performed in the following 
successive steps:

(1) The deϐinition of an ADME-related dynamic pharmacokinetic system [25] 
denoted by H, using: the Laplace transform of the mathematically described serum 
concentration-time proϐile of ranitidine, denoted by C(s), and the Laplace transform 
of the mathematically described oral administration of ranitidine [7], denoted by I(s). 
In the deϐinition of the ADME-related dynamic pharmacokinetic the proϐile C(s) and 
the proϐile I(s) was used as the output and input, respectively, of the ADME-related 
dynamic pharmacokinetic system H [10-24].

 (2) The introduction of the following simplifying assumptions: a) initial conditions 
of the ADME-related dynamic pharmacokinetic system were zero; b) all processes 
mathematically described by the ADME-related dynamic pharmacokinetic system 
were linear and time invariant [10-24]; c) concentrations of ranitidine were the 
same throughout all subsystems of the ADME-related dynamic pharmacokinetic 
system, (where each subsystem was an integral part of the ADME-related dynamic 
pharmacokinetic system).

(3) The static and dynamic properties of the pharmacokinetic behavior of orally 
administered ranitidine [25-27] were described with the ADME-related dynamic 
pharmacokinetic system; 

(4) The transfer function, denoted by H(s), of the ADME-related dynamic 
pharmacokinetic system was derived, using the proϐiles C(s) and I(s), see Eq. (1).
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(5) The ADME-related dynamic pharmacokinetic system was described with the 
transfer function H(s) in the complex domain. 

In the following text, the ADME-related dynamic pharmacokinetic system was 
simply called the dynamic system 

(6) The mathematical model of the dynamic system was developed using the 
computer program named CTDB [15] and the transfer function model HM(s) described 
by the following equation: 
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On the right-hand-side of Eq. (2) is the Padé approximant [28,29] of the mathematical 
model of the transfer function HM(s), G is an estimator of a model parameter called a 
gain of a dynamic system, 1 1, , ,n ma a b b  are additional model parameters, and n is 
the highest degree of the nominator polynomial, and m is the highest degree of the 
denominator polynomial, n is the highest degree of the nominator polynomial, and n < 
m (see Eq. (2)) [9-24]. 

(7) The transfer function H(s) was converted into equivalent frequency response 
function, denoted by F(i ωj) [29].
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Table 1: Parameters of the fourth-order model of the dynamic system describing the dynamic pharmacokinetic 
behavior of orally administered ranitidine [1].

Model parameters Estimates of model parameters (95% CI)

G (h.l-1) 0.0097 0.006 to 0.012

 a0 (-) 0.923 0.825 to 1.024

a1 (min) 69.15 45.12 to 72.38

 b 1   (min) 421.88 391.73 to 462.02

b2 (min2) 6043.61 7028.59 to 6059.33

b3 (min3) 3478275.74 3478271.05 to 3678280.33

b4 (min4) 5825685.25 29456822.06 to 6234685.25 

Table 2: Model-based estimates of pharmacokinetic variables of orally administered ranitidine [1].

Primary pharmacokinetic variables Estimates of primary pharmacokinetic variables

The half-time of Ranitidine t½ (hod) 1.5±0.4*

Clearance of ranitidine (ml/min) 103.1±15.3

Renal clearance of ranitidine (ml/min) 74.1±5.1

Body clearance of ranitidine (ml/min) 218±8.1

Elimination half-life of ranitidine (hr) 51.6±5.4

Distribution volume of ranitidine (l) 681±9.5

AUCο∞ (ng.h/ml) 26.95

*standard deviation 

Figure 1: Patient 24, varying maximum activity in visual comparison of I-131 scintigram (1a) with the Tc-99m-O4
- 

scintigram (1b). Grid image in Figure 1a highlighted by the use of a high-energy collimator.

(8) The non-iterative met hod described in the study published previously [29] was 
used to develop a mathematical model of the frequency response function F M ( iωj) and 
to determine point estimates of parameters of the model of the frequency response 
function FM(iωj) in the complex domain. The model of the frequency response function 
FM(iωj) used in the current study is described by the following equation:
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Analogously as in Eq. (2), n is the highest degree of the numerator polynomial 
of the model of the frequency response function FM(iωj), m is the highest degree of 
the denominator polynomial of the mathematical model of the frequency response 
function FM(iωj), n ≤ m, i is the imaginary unit, and ω is the angular frequency in Eq. (3). 

The Akaike information criterion, modiϐied for the use in the complex domain 
[9,30] was employed to select the best mathematical model of the frequency response 
function FM(iωj) and to determine point estimates of the parameters of the best 
mathematical model of the frequency response function FM(i j). 
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 Finally, the Monte-Carlo and the Gauss-Newton method [31,32] were used to reϐine 
the mathematical model of the frequency response function FM(iωj) and to determine 
95 % conϐidence intervals of the parameters of the best mathematical model of the 
frequency response function FM(iωj) in the time domain. 

After the development of the best mathematical model FM( i ωj) of the dynamic 
system investigated, the following primary pharmacokinetic variables of ranitidine 
were determined: the elimination half-time of ranitidine, denoted by t½ ,    the area 
under the serum concentration-time proϐile of ranitidine from time zero to inϐinity, 
denoted by, AUC ο -∞, and total body clearance of ranitidine, denoted by CI. 

The mathematical model of the transfer function HM(s) and the mathematical model 
of the frequency response function FM(iωj) are implemented in the computer program 
CTDB [15]. A demo version of the computer program CTDB is available at the following 
web site of the author: http://www.uef.sav.sk/advanced.htm 
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