ISSN
2639-992X

*Address for Correspondence: Vladimir I

 Krupyanko, GK Skryabin Institute of Biochemistry and Physiology of Microorganism, Russian Academy of Sciences, Town Pushchino, Prospekt Nauki 5, Moscow Region, Russia, 142290, Tel: (495) 625-74-48; Fax: 956-33-70; Email: krupyanko@ibpm.pushchino.ruSubmitted: 19 September 2018
Approved: 29 October 2018
Published: 30 October 2018
Copyright: © 2018 Krupyanko VI, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Keywords: Quadratic forms of equations for correction of K_{i} and K_{a} constants

Check for updates

Application of the Pyphagor's Theorem for Correction of K_{i} and K_{a} constants of enzyme inhibition and activation

VI Krupyanko ${ }^{\text {* }}$ and PV Krupyanko ${ }^{2}$
${ }^{1}$ GK Skryabin Institute of Biochemistry and Physiology of Microorganism, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Prospect Nauki 5, Russia
${ }^{2}$ Center for Information Technologies on Transport LLC, 142060, Moskow, Domodedovo, MK-
Region Barybino, str. Yuzhnaya 17, Russia

Abstract

The analysis of dependence of the length projection of L_{i} vectors of biparametrical inhibited and activated (L_{a}) enzymatic reactions from the length projection of vectors of monoparametrical inhibited and activated enzymatic reactions on the basic σ_{0} plane in three-dimensional $K_{m}^{\prime} V^{\prime} I$ coordinate system, allows to deduct the quadratic forms of equations for the correction of the constants of inhibition (K_{i}) and activation $\left(K_{\mathrm{a}}\right)$ of enzymes. Examples of correction of constants are given.

Introduction

The study inhibition of enzymes helps to synthesize the drugs from poisoning of living organisms.

In previous articles [1-9], devoted to construction of a vector method representation of enzymatic reactions in the three-dimensional $K_{m}^{\prime} V^{\prime}$ I coordinate system the properties of L vectors of enzymatic reactions was analyzed, from which the parametriacal classification of the types of enzymatic reactions and the equations for calculation of initial activated $\left(v_{a}\right)$ and inhibited $\left(v_{i}\right)$ reaction rates was deduced. In articles [2-9] the equations of traditional form (t.f.) for calculation of the constants of activation (K_{a}) and absent in practice the equations of nontrivial types of biparametrical constants of inhibition $\left(K_{i}\right)$ of enzymes (Table 1), was deduced [5].

This work is devoted to deduction of quadratic form (q.f.) of the equations for correction of biparametrical constants of inhibition K_{i} and activation K_{a} of enzymes (Table 1, q.f.), opening additional ability in the analysis of enzyme action what help of these equations.

The examples of comparative using traditional and quadratic form of equations for correction of K_{i} and K_{a} constants of enzyme inhibition and activation are given.

Deduction of traditional form of equations

From Figures 1 and 2 it easy to see, that $\left(l_{I}\right)$ length of $\left(L_{l i}\right)$ projection of $L_{l i}$ vector of biparametrically coordinated, I_{i} type (or mixed type [10-12] of enzyme inhibition) on P_{i} semiaxis will be determined by difference: (i-0) parameters, The basic $\sigma 0$ plane (Figure 2), actually is orthogonal projection of three-dimensional L vectors of (Figure 1), i.e. the scalar magnitudes (orthogonal between them self) $L_{I I I I}$ and $L_{I V i}$ projections of monoparametrical $\mathrm{L}_{I I I}$ and $\mathrm{L}_{I V i}$ vectors of $I I I_{i}$ and $I V_{i}$ type of enzyme inhibition, (which

No	Effect	Type of effect	Correlation between K_{m}^{\prime} and V^{\prime} parameters	Graphs in ($\left.v_{o}^{-1} ; \mathrm{S}^{-1}\right)$ coordinates
1	Inhibition-$(i>0)$	I_{i}	$K_{m}^{\prime}>K_{m}^{0}, V^{\prime}<V^{0}$	
2		$I I_{i}$	$\begin{aligned} & K_{m}^{\prime}<K_{m}^{0}, V^{\prime}<V^{0} \\ & \left(\operatorname{tg} \omega^{\prime}=\operatorname{tg} \omega^{0}\right) \end{aligned}$	
3		$I I I_{i}$	$K_{m}^{\prime}=K_{m}^{0}, V^{\prime}<V^{0}$	
4		$I V_{i}$	$K_{m}^{\prime}>K_{m}^{0}, V^{\prime}=V^{0}$	
5		V_{i}	$K_{m}^{\prime}>K_{m}^{0}, V^{\prime}>V^{0}$	
6		$V I_{i}$	$\begin{aligned} & K_{m}^{\prime}<K_{m}^{0}, V^{\prime}<V^{0} \\ & \left(\operatorname{tg} \omega^{\prime}>\operatorname{tg} \omega^{0}\right) \end{aligned}$	
7		$V I I_{i}$	$\begin{aligned} & K_{m}^{\prime}<K_{m}^{0}, V^{\prime}<V^{0} \\ & \left(\operatorname{tg} \omega^{\prime}<\operatorname{tg} \omega^{0}\right) \end{aligned}$	
8	None	I_{0}	$K_{m}^{\prime}=K_{m}^{0}, V^{\prime}=V^{0}$	
9	Activation $(a>0)$	$V I I_{a}$	$\begin{aligned} & K_{m}^{\prime}>K_{m}^{0}, V^{\prime}>V^{0} \\ & \left(\operatorname{tg} \omega^{\prime}>\operatorname{tg} \omega^{0}\right) \end{aligned}$	
10		$V I_{a}$	$\begin{aligned} & K_{m}^{\prime}>K_{m}^{0}, V^{\prime}>V^{0} \\ & \left(\operatorname{tg} \omega^{\prime}<\operatorname{tg} \omega^{0}\right) \end{aligned}$	
11		V_{a}	$K_{m}^{\prime}<K_{m}^{0}, V^{\prime}<V^{0}$	
12		$I V_{a}$	$K_{m}^{\prime}<K_{m}^{0}, V^{\prime}=V^{0}$	
13		$I I I_{a}$	$K_{m}^{\prime}=K_{m}^{0}, V^{\prime}>V^{0}$	
14		$I I_{a}$	$\begin{aligned} & K_{m}^{\prime}>K_{m}^{0}, V^{\prime}>V^{0} \\ & \left(\operatorname{tg} \omega^{\prime}=\operatorname{tg} \omega^{0}\right) \end{aligned}$	
*15		I_{a}	$K_{m}^{\prime}<K_{m}^{0}, V^{\prime}>V^{0}$	

Table 1: Equations for calculation of K_{i} and K_{a} constants (in traditional form).
*The symbol of a graph in Figure. 1-15 corresponds to the type of reaction under study. For example: the line (0) characterizes the position of initial (nonactivated) enzymatic reaction, line I - the position of a graph representing the I_{a} type of activated enzymatic reaction etc.

$\begin{array}{\|l\|l\|} \hline \text { Tppe } \\ \text { of } \\ \text { effect } \end{array}$	$\underset{\substack{\text { New name of enzy-matic } \\ \text { reactions }}}{\text { a }}$	Traditio-nal name	Traditional form (t.f.) of equation for calculation of K_{i} and K_{a} constants	Quadratic form (q.f.) of equations
I_{i}	bipara- metrically coordina-ted inhibition	mixed inhibitition	$K_{l i}=i \prime\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$	$K_{l i}=1,\left(\frac{1}{K_{I I I}^{2}}+\frac{1}{K_{I V}^{2}}\right)^{0,5}$
$I I_{i}$	unassoci-ative inhibition	uncom-petitive inhibi- tion	$K_{l l i}=i \prime\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$	$\begin{aligned} & K_{I I I}=1 / \\ & \left(\frac{1}{K_{I I I I}^{2}}+\frac{1}{K_{I V a}^{2}}\right)^{0,5} \end{aligned}$
$I I I_{i}$	catalytic inhibition	noncom-petitive inhibiton	$K_{l u i}=\frac{i}{V^{0} / V^{\prime}-1}=\frac{i}{\frac{V^{0}-V^{\prime}}{V^{\prime}}}$	$K_{l l i i}=1 /\left(\frac{1}{K_{I l i}^{2}}+0\right)^{0,5}$
V_{i}	associa-tive inhibition	$\begin{aligned} & \text { com-petetive } \\ & \text { inhibi- } \\ & \text { tion } \end{aligned}$	$K_{l v i}=\frac{i}{K_{m}^{\prime} / K_{m}^{0}-1}=\frac{i}{K_{m}^{\prime}-K_{m}^{0}} K_{m}^{K_{m}^{0}}$	$K_{l V_{i}}=1\left(\frac{1}{K_{l V_{i}}^{2}}+0\right)^{0.5}$
V_{i}	pseuddoin-hibition		$K_{V_{i}}=i \prime\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$	$\begin{aligned} & K_{V i_{i}=1 /} \\ & \left(\frac{1}{K_{I I a}^{2}}+\frac{1}{K_{I V}^{2}}\right)^{0,5} \end{aligned}$
$V I_{i}$	discoordi-nated inhibition		$K_{V / I}=i \prime\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$	$\begin{aligned} & K_{V i=}=1 / \\ & \left(\frac{1}{K_{I I I}^{2}}+\frac{1}{K_{I V a}^{2}}\right)^{0.5} \end{aligned}$
$V I I_{i}$	transient innibition		$K_{\text {VII }}=i \prime\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$	$\begin{aligned} & K_{V I I I}=1 / \\ & \left(\frac{1}{K_{I I I}^{2}}+\frac{1}{K_{I V a}^{2}}\right)^{0.5} \end{aligned}$
I_{0}	$\begin{aligned} & \text { initial } \\ & (i=0 \text { and } \\ & a=0) \text { enzymatic reaction } \end{aligned}$			
$V I I_{a}$	transient activation		$K_{\text {VIIa }}=a \prime\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$	$\begin{aligned} & K_{\text {VIIa }}=1 / \\ & \left(\frac{1}{K_{I I I I}^{2}}+\frac{1}{K_{I V i}^{2}}\right)^{0,5} \end{aligned}$
$V I_{a}$	discoor-dinated activation		$K_{V / I a}=a \prime\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$	$\begin{aligned} & K_{V I a}=1 / \\ & \left(\frac{1}{K_{I I l a}}+\frac{1}{K_{I V i}^{2}}\right)^{0,5} \end{aligned}$
V_{a}.	pseudd-ativation		$K_{V a}=a \prime\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$	$\begin{aligned} & K_{V a}=1 / \\ & \left(\frac{1}{K_{I l i}^{2}}+\frac{1}{K_{I V a}^{2}}\right)^{0,5} \end{aligned}$
I_{a}	associa activation	competi-tive activa-tion	$K_{V V a}=\frac{a}{K_{m}^{0} / K_{m}^{\prime}-1}=\frac{a}{\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}}$	$K_{I V a}=1 /\left(\frac{1}{K_{I V a}^{2}}+0\right)^{0.5}$
$I I I_{a}$	catalytic activation	noncom-petitve activa-tion	$K_{\text {IHIa }}=\frac{a}{V^{\prime} / V^{0}-1}=\frac{a}{\frac{V^{\prime}-V^{0}}{V^{0}}}$	$K_{\text {III }}=1 /\left(\frac{1}{K_{\text {IIIa }}^{2}}+0\right)^{0.5}$
$I I_{a}$	unassocia-tive activation	uncom-petitive activa-tion	$K_{l a}=a l\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$	$\begin{aligned} & K_{I J a}=1 / \\ & \left(\frac{1}{K_{I l a}^{2}}+\frac{1}{K_{I V i}^{2}}\right)^{0.5} \end{aligned}$
I_{a}	bipara-metrically coordina-ted activation	$\underbrace{\substack{\text { mixed } \\ \text { activation }}}_{\text {mixed }}$	$K_{l a}=a \prime\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$	$\begin{aligned} & K_{l a=1 /} \\ & \left(\frac{1}{K_{\text {Illa }}^{2}}+\frac{1}{K_{I V a}^{2}}\right)^{0,5} \end{aligned}$

Table 1 continued

Figure 1: Three-dimensional (packed) $K_{m}^{\prime} V^{\prime} I$ system of rectangular coordinates with coincident P_{i} and P_{a} semiaxes of molar concentrations of inhibitor i and activator a. The symbols of kinetic parameters: K_{m}^{\prime}, V, three-dimensional vectors:
 directing planes $\sigma_{N V^{\prime}} \sigma_{I I I^{\prime}} \sigma_{V \mathrm{Va}^{\prime}} \sigma_{I I \mathrm{a}}$ on the $P K_{m}^{\prime}, P 0_{V^{\prime}}, P 0_{K_{m}^{\prime}}$ and $P V^{\prime}$ coordinate semiaxes the same as in the text.

Figure 2: Two-dimensional (scalar) $K_{m}^{\prime} V^{\prime}$ coordinate system. The symbols of kinetic parameters: $K_{m}^{\prime}, V^{\prime}, K_{m}^{0} \ldots$, the projections LIi, LIVi... Lla, LIVa of three-dimensional vectors: LIi, LIVi... LIa, LIVa on the basic $\sigma 0$ plane and symbols of $P K_{m}^{\prime}, P 0_{V}, P 0_{K_{m}}$ and $P V^{\prime}$ coordinate semiaxes the same as in Figure 1 and in the text.
also are the coordinate of these vectors) but in the same time they taking adjacent place relative to orthogonal $L_{l i}$ projection of $L_{l i}$ vector (Figure 2), determined by equation:

$$
\begin{equation*}
l_{I}=\sqrt{\left(l_{I I I i}\right)^{2}+\left(l_{I V i}\right)^{2}} \tag{1}
\end{equation*}
$$

It is analogous for length of adjacent projections of $L_{I I I}, L_{V i} \ldots$ and $L_{I a^{\prime}} L_{I I a^{\prime}} L_{V a} \ldots$ for all other $\mathrm{L}_{I I I}, \mathrm{~L}_{V i} \ldots, \mathrm{~L}_{I a}, \mathrm{~L}_{I I a}, \mathrm{~L}_{V a} \ldots$ three-dimensional vectors of biparametrical reactions (Figure 2).

Having expressed from Eqn. (2)

$$
\begin{equation*}
l_{I I I i}=\frac{V^{0}-\dot{V}}{V^{\prime}}=\frac{i}{K_{I I I i}} \tag{2}
\end{equation*}
$$

the $l_{I I I I}$ length of dimensionless of $L_{I I I I}$ projection of $\mathrm{L}_{I I I}$ vector on $P 0_{V}$ semiaxis of K_{m}^{\prime} $V^{\prime} I$ coordinate (Figure 1) and from Eqn. (3)

$$
\begin{equation*}
l_{I V i}=\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}=\frac{i}{K_{I V i}} \tag{3}
\end{equation*}
$$

the $l_{I V i}$ length of the second adjacent dimensionless of $L_{I V i}$ vector projection on $P K^{\prime}{ }_{m}$ semiaxis and substituted them in Eqn. (4):

$$
\begin{equation*}
K_{I i}=\operatorname{Pr}_{p_{i}} \mathrm{~L}_{l i} / \operatorname{Pr}_{\sigma_{0}} \mathrm{~L}_{l i{ }^{\prime}} \tag{4}
\end{equation*}
$$

we shall obtain traditional form (t.f.) of equation for calculation of the $K_{i i}$ constant of biparametrically coordinated, I_{i} type, inhibition of enzymes, taking in to consideration the $l_{l i}$ length of orthogonal projection of $\mathrm{L}_{l i}$ vector on basic σ_{0} plane of figure 1 :

$$
\begin{equation*}
K_{I i}=\frac{i}{\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{0}-V}{V}\right)^{2}\right)^{0.5}} . \tag{5}
\end{equation*}
$$

Similarly for deduction of all biparametrical equations of table 1 [5,7,8].

Deduction of quadratic form of equations

From analysis of equations (1-4) one can easily see that substitution in Eqn. (4) of the dimensionless coordinates of the lengths of $L_{I I I}$ and $L_{I V i}$ vector projections is equal to substitution in this equation of the i/ $K_{I I I}$ and $i / K_{I V i}$ parameters

$$
\begin{equation*}
l_{I i}=\sqrt{\left(\frac{i}{K_{I I I i}}\right)^{2}+\left(\frac{i}{K_{I V i}}\right)^{2}} \tag{6}
\end{equation*}
$$

then it is not difficult to become the quadratic forms of equations for correction
of K_{i} and K_{a} constants of biparametrical types of inhibition and activation of enzymes (Table 1).

For example, such as:

$$
\begin{equation*}
l_{l i}=\frac{i_{I}}{K_{I}}, \tag{7}
\end{equation*}
$$

this substitution will leads to equation:

$$
\begin{equation*}
K_{I i}=i / l_{I I}=i /\left(i /\left(\frac{1}{K_{I I I}^{2}}+\frac{1}{K_{I V i}^{2}}\right)^{0,5}\right)=1 /\left(\frac{1}{K_{I l i}^{2}}+\frac{1}{K_{I V i}^{2}}\right)^{0,5} \tag{8}
\end{equation*}
$$

or, in quadratic form:

$$
\begin{equation*}
\frac{1}{K_{i}^{2}}=\frac{1}{K_{I I i}^{2}}+\frac{1}{K_{I V i}^{2}} \tag{9}
\end{equation*}
$$

convenient for correction of $K_{I I}$ constant inhibition of enzymes (Eqn. 1, q.f., Table 1).
It is analogous for all the other equations of biparametrical types of inhibition (Eqns. 2, 5-7), and activation (Eqns. $9-11$ and 14, 15) of enzymes, (Table 1, q.f.) taking into account, orthogonal projections of tree-dimensional L vectors on the basic σ_{0} plane of (Figure 1) by data analysis of correspond position two-dimensional scalar L projections of L vectors on these vectors in $K_{m}{ }_{m} V^{\prime}$ coordinate system (Figure 2). For example, the orthogonal projection length of $\mathrm{L}_{l a}$ vector of, I_{a} type, activation will be determined by analogous common equation (1, text) of enzyme activation that is located in the σ_{0} plane of scalar $K_{m}^{\prime} V^{\prime}$ coordinate system (Figure 2, in $\mathrm{II}^{\text {nd }}$ quadrant) and edged by two $L_{I I I_{a}}$ and $L_{I V_{a}}$ lengths of edged projection of this vector on the $P V^{\prime}$ and $P 0_{K m}$ semiaxes $\left(l_{l a}=\sqrt{\left(l_{I I I a}\right)^{2}+\left(l_{I V a}\right)^{2}}\right)$,
a) in equation of $l_{I I I}$ length projection - by two $l_{I V a}$ and $l_{I I I I}$ lengths of edged vector projections $\left(l_{I I}=\sqrt{\left(l_{I I I}\right)^{2}+\left(l_{I V a}\right)^{2}}\right)$;
b) in equation of $l_{V i}$ length projection $-l_{I V i}$ and $l_{I I I a}$ lengths of edged vector projections $\left(l_{V}=\sqrt{\left(l_{I I I}\right)^{2}+\left(l_{I V i}\right)^{2}}\right)$ and so on.

Examples of constants correction

Example 1: Calculation of $K_{I I}$ constant inhibition.
The inhibitory effect of Tungstic acid anions $\mathrm{WO}_{4}^{2-}\left(0.5 \cdot 10^{-4} \mathrm{M}\right)$ on the initial rate of pNPP cleavage by calf alkaline phosphatase figure 3 shows that the presence $0.5 \cdot 10^{-4} \mathrm{M}$ of these anions in the enzyme-substrate system makes the binding of the enzyme to the substrate cleaved ($K_{m}^{0}=4.45 \cdot 10^{-5} \mathrm{M}, K_{m}^{\prime}=6.56 \cdot 10^{-5} \mathrm{M}$) difficult and leads to a decrease in the maximum reaction rate $\left(V^{0}=2.56, V^{\prime}=1.74 \mu \mathrm{~mol} /(\mathrm{min}\right.$ per $\mu \mathrm{g}$ protein). This meets all the features ($K_{m}^{\prime}>K_{m}^{0}, V^{\dot{\prime}}<V^{0}, i>0$) of the biparametrically coordinated, I_{i} type, of enzyme inhibition (Table 1, line 1). Hence, to calculate the $K_{l j}$ constant of this enzyme inhibition it is necessary to use Eqn. (5, text), or (Eqn. 1, t.f., Table 1).

Substitution in this equation of the parameters $K_{m}^{\prime}, K_{m}^{0}, V^{\prime}, V^{0}$ and i obtained by data analysis of (Figure 3) allows the calculation of this constant of enzyme inhibition:

$$
\begin{equation*}
K_{\text {Ii }}=\frac{0.5 \cdot 10^{-4} \mathrm{M}}{\left(\left(\frac{6.56-4.45}{4.45}\right)^{2}+\left(\frac{2.56-1.74}{1.74}\right)^{2}\right)^{0.5}}=7.48 \cdot 10^{-5} \mathrm{M} . \tag{10}
\end{equation*}
$$

Substitution of these parameters rewritten to forms with $\left(K_{I I I i}=1.06210^{-4} \mathrm{M}, K_{I V i}\right.$ $=1.05510^{-4} \mathrm{M}$) in (Eqn. 1, q.f., Table 1)

$$
\begin{equation*}
\frac{1}{K_{i}^{2}}=\frac{1}{K_{I I I}^{2}}+\frac{1}{K_{I V i}^{2}}=\left(\frac{1}{1.062^{2}}+\frac{1}{1.055^{2}}\right) \tag{11}
\end{equation*}
$$

Figure 3: Inhibitory effect of anions WO_{4}^{2-} on the initial rate $\nu_{0}, \mu \mathrm{~mol} /(\mathrm{min}$ per $\mu \mathrm{g}$ protein) of pNPP cleavage by calf alkaline phosphatase.
Note: line 1 - the concentration of WO $\begin{aligned} & 2- \\ & 4\end{aligned}$ is $0.5 \cdot 10-4 \mathrm{M}$; line (0) - the inhibitor is absent.
result in to the same value of the constant of enzyme inhibition:
$K_{l i}=\frac{1}{\left(\frac{1}{K_{I I I}^{2}}+\frac{1}{K_{I V I}^{2}}\right)^{0.5}}=\left(\frac{\left(K_{I V}^{2} \cdot K_{I I I}^{2}\right) \cdot\left(10^{-4}\right)^{2} \cdot\left(10^{-4}\right)^{2}}{\left(K_{I I I}^{2}+K_{I V I}^{2}\right) \cdot\left(10^{-4}\right)^{2}} \cdot \frac{M^{4}}{M^{2}}\right)^{0.5}=$
$\sqrt{0.5602} \cdot \sqrt{\left(10^{-4}\right)^{2}} \cdot \sqrt{M^{2}}=0.7485 \cdot 10^{-4} \cdot \mathrm{M}$.
From Eqns. $(10-12)$ it follows that dimension of $K_{I i}$ constants in all cases, are the molar concentration of inhibitor:

$$
\begin{equation*}
K_{I i}=\sqrt{i^{4} / i^{2}}=i[\mathrm{M}] . \tag{13}
\end{equation*}
$$

Correction. Determine the value of the $K_{I V i}$ constant of this experiment (Figue 3) by values of $K_{I I}$ and $K_{I I I I}$ constants.

From equation (11), rewritten to the form,
$\left(\frac{1}{K_{i}^{2}}=\frac{1}{K_{I I I}^{2}}+\frac{1}{K_{I V i}^{2}}\right)=\left(\frac{1}{0.7485^{2}}=\frac{1}{K_{I V i}^{2}}+\frac{1}{1.062^{2}}\right)$,
it follows that:

$$
\begin{equation*}
K_{I V i}=\left(\frac{K_{i}^{2} \cdot K_{I I I}^{2}}{K_{I I I}^{2}-K_{I}^{2}}\right)^{0.5} 10^{-4} \mathrm{M} . \tag{15}
\end{equation*}
$$

Substitution the necessary parameters from (Eqn. 14) to (Eqn. 15), we find that:

$$
K_{I V i}=\left(\frac{0.7485^{2} \cdot 1.062^{2}}{1.062^{2}-0.7485^{2}}\right)^{0.5} \cdot 10^{-4} \mathrm{M}=\left(\frac{0.5595 \cdot 1.1278}{1.1276-0.5595}\right)^{0.5} \cdot 10^{-4} \mathrm{M}=
$$

$$
\begin{equation*}
1.11295^{0,5} \cdot 10^{-4} \mathrm{M}=1.0549 \cdot 10^{-4} \mathrm{M} \tag{16}
\end{equation*}
$$

which is in good agreement with the experimental value of this constant (Eqn. 10).
Example 2: Calculation of $K_{V i}$ constant inhibition.
The inhibitory effect of Pyrrolidine dithiocarbonic acid (PDTA) on the initial rate of pNPP cleavage by canine alkaline phosphatase shows that in the presence of 110^{-3} M PDTA the parameters $K_{m}^{0}=4.69 \cdot 10^{-5} \mathrm{M}$ and $V^{0}=2.921 \mu \mathrm{~mol} /(\min$ per μ g protein) change as follows: $K_{m}^{\prime}=11.26 \cdot 10^{-5} \mathrm{M}$ and $V^{\prime}=3.616 \mu \mathrm{~mol} /(m i n ~ p e r ~ \mu \mathrm{~g}$ protein) (Figure 4). This corresponds to the, V_{i} type, of enzyme pseudoinhibition ($K_{m}^{\prime}>, V>, i>0$) (Table 1, line 5) and Eqn. (5, t.f.) is applicable for calculation of the $K_{V i}$ constant of enzyme

Figure 4: Inhibitory effect of PDTA on the initial rate $v_{0}, \mu \mathrm{~mol} /($ min per $\mu \mathrm{g}$ protein) of pNPP cleavage by canine alkaline phosphatase.
Note: line 1 - the concentration of PDTA is $1 \cdot 10^{-3} \mathrm{M}$; line (0) - the inhibitor is absent.
inhibition. Substitution all necessary parameters in this equation allow calculation of this constant of enzyme inhibition:

$$
\begin{equation*}
K_{V i}=\frac{1 \cdot 10^{-3} \mathrm{M}}{\left(\left(\frac{11.26-4.69}{4.69}\right)^{2}+\left(\frac{3.616-2.92}{2.92}\right)^{2}\right)^{0.5}}=7.04 \cdot 10^{-4} \mathrm{M} . \tag{17}
\end{equation*}
$$

Substitution all necessary parameters from of recalculated parameters of (Figure 4) to (Eqn. 5, Table 1, q.f.) - result in to value of $K_{V i}$ constant inhibition:

$$
\begin{equation*}
\frac{1}{K_{V}^{2}}=\left(\frac{1}{K_{I I a}^{2}}+\frac{1}{K_{I V i}^{2}}\right), \tag{18}
\end{equation*}
$$

rewritten to the forms ($K_{I V i}=0.71410^{-3} \mathrm{M}$ and $K_{I I I a}=4.20310^{-3} \mathrm{M}$)
from which it follows that

$$
\begin{align*}
& K_{V i}=\frac{1}{\left(\frac{1}{K_{I l a i}^{2}}+\frac{1}{K_{I V i}^{2}}\right)^{0.5}}=\left(\frac{\left(K_{I V i}^{2} \cdot K_{I I I}^{2}\right) \cdot\left(10^{-4}\right)^{2} \cdot\left(10^{-4}\right)^{2}}{\left(K_{I I I i}^{2}+K_{I V I}^{2}\right) \cdot\left(10^{-4}\right)^{2}} \cdot \frac{M^{4}}{M^{2}}\right)^{0.5}= \\
& \left(\frac{0.51 \cdot 17.67}{0.51+17.67}\right)^{0.5}=\left(\frac{9.093}{18.175}\right)^{0.5}=\sqrt{0.496}=0.7041 \cdot 10^{-3} \mathrm{M} . \tag{19}
\end{align*}
$$

Example 3: Calculation of $K_{V a}$ constant activation.
The results of study presented in figure 5 show that: the parameters of initial nonactivated reaction of pNPP cleavage by alkaline phosphatase $K_{m}^{0}=5.45 \cdot 10^{-5} \mathrm{M}, V^{0}=$ $9.363 \mu \mathrm{~mol} /(\min \mu \mathrm{g}$ protein) in the presence of 0.001 M of activator change as follows: $K_{m}^{\prime}=3.47 \cdot 10^{-5} \mathrm{M}, V^{\prime}=8.803 \mu \mathrm{~mol} /(\min \mu \mathrm{g}$ protein), which satisfies all the features of type V_{a} of enzyme pseudoactivation (line 11, Table 1).

Substitution of the experimental parameters of (Figure 5, in Eqn. 11, t.f., Table 1) gives the following value of $K_{V a}$ constant:

$$
\begin{equation*}
K_{V a}=\frac{1 \cdot 10^{-3} \mathrm{M}}{\sqrt{\left(\frac{5.45-3.47}{3.47}\right)^{2}+\left(\frac{9.363-8.803}{8.803}\right)^{2}}}=1.74 \cdot 10^{-3} \mathrm{M} \tag{20}
\end{equation*}
$$

or according Eq. 11, Table 1)
$K_{V a}=\frac{1}{\left(\frac{1}{K_{I I a}^{2}}+\frac{1}{K_{I V i}^{2}}\right)^{0.5}}=\left(\frac{\left(K_{I V i}^{2} \cdot K_{I I a}^{2}\right) \cdot\left(10^{-4}\right)^{2} \cdot\left(10^{-4}\right)^{2}}{\left(K_{I I a}^{2}+K_{I V_{i}}^{2}\right) \cdot\left(10^{-4}\right)^{2}} \cdot \frac{M^{4}}{M^{2}}\right)^{0.5}=$

$$
\begin{equation*}
\left(\frac{1.753^{2} \cdot 15.72^{2}}{1.753^{2}+15.72^{2}}\right)^{0.5} \quad 10^{-3} \mathrm{M}=\left(\frac{759.39}{258.19}\right)^{0.5}=1.742 \cdot 10^{-3} \mathrm{M} . \tag{21}
\end{equation*}
$$

Example 4: Calculate the value of $K_{I I I I}$ constant of experiment (Figure 3), by value of $K_{I i}$ and $K_{I V i}$ constants.

From equation (1, Table 1, t.f.), rewritten to the form (22)

$$
\begin{equation*}
\left(\frac{1}{K_{i}^{2}}=\frac{1}{K_{I I I}^{2}}+\frac{1}{K_{I V i}^{2}}\right)=\left(\frac{1}{0.7485^{2}}=\frac{1}{K_{I I I}^{2}}+\frac{1}{1.055^{2}}\right), \tag{22}
\end{equation*}
$$

it follows that:

$$
\begin{equation*}
K_{I V i}=\left(\frac{K_{i}^{2} \cdot K_{I I I}^{2}}{K_{I I I}^{2}-K_{I}^{2}} \cdot M^{2}\right)^{0,5} . \tag{23}
\end{equation*}
$$

Having substituted all necessary parameters from (Eqn. 22) into (Eqn. 23), the next value of this constant is received:

$$
\begin{align*}
& K_{I I I I}=\left[\left(\frac{0.748^{2} \cdot 1.055^{2}}{1.055^{2}-0.748^{2}} \cdot\left(10^{-4}\right)^{2} \cdot M^{2}\right)\right]^{0,5}=\left(\frac{0.5595 \cdot 1.113}{1.113-0.5595}\right)^{0,5} \cdot 10^{-4} \mathrm{M}= \\
& 1.125^{0.5} \cdot 10^{-4} \mathrm{M}=1.061 \cdot 10^{-4} \mathrm{M} . \tag{24}
\end{align*}
$$

Example 5: Calculate the value of $K_{I I I a}$ constant of experiment (Figure 5), by value of $K_{V a}$ and $K_{I V i}$ constants.

From equation (11, Table 1, t.f.), rewritten to the form (22)

$$
\begin{equation*}
\left(\frac{1}{K_{V a}^{2}}=\frac{1}{K_{I I a}^{2}}+\frac{1}{K_{I V i}^{2}}\right)=\left(\frac{1}{1.742^{2}}=\frac{1}{K_{I I a}^{2}}+\frac{1}{1.753^{2}}\right), \tag{25}
\end{equation*}
$$

it follows that:

$$
\begin{align*}
& K_{I I I a}=\left(\frac{K_{V a}^{2} \cdot K_{I V i}^{2}}{K_{I V i}^{2}-K_{V a}^{2}} \cdot M^{2}\right)^{0.5}=\left(\frac{1.753^{2} \cdot 1.742^{2}}{1.753^{2}-1.742^{2}}\right)^{2} 10^{-3} \mathrm{M}= \\
& \left(\frac{9.435}{0.038}\right)^{0.5} 10^{-3} \mathrm{M}=245.4^{0.5} 10^{-3} \mathrm{M}=15.6610^{-3} \mathrm{M} \tag{26}
\end{align*}
$$

It is no desirable to put $K_{V a}=1.74 \cdot 10^{-3} \mathrm{M}$ from (Eqn. 20) in (Eqn. 25), because calculation leads to $K_{I I I a}=14.4310^{-3} \mathrm{M}$ (instead $15.6610^{-3} \mathrm{M}$), such as the first constant is not in Pythagorean's «bundle» (Egn. 25).

It is analogous for all biparametrical types of catalyzed reactions (Table 1).

Figure 5: Activating effect of Guo on the initial rate $V_{0}, \mu \mathrm{~mol} /($ min per $\mu \mathrm{g}$ protein) of pNPP cleavage by canine alkaline phosphatase.
Note: line 1 - the concentration of Guo is $1 \cdot 10^{-3} \mathrm{M}$; line (0) - the activator is absent.

Discussion

The analysis of data obtained shows that:

1) The values of the constants of biparametrical types of inhibition (Eqns. 1, 2, 5 7) and activation (Eqns. $9-11,14,15$), are not subjected to additive dependencies on the values of the constants of monoparametrical types of inhibition (Eqns. 3, 4) and activation (Eqns. 12, 13) of the enzymes (Table 1);

$$
\begin{equation*}
K_{I i} \neq K_{I V i}+K_{I I I} . \tag{27}
\end{equation*}
$$

They subjected to geometrical relationships (Pyphagorean theorem):
$\left(1 / K_{i}\right)^{2}=\left(1 / K_{I V i}\right)^{2}+\left(1 / K_{I I I}\right)^{2}$,
2) this opens an array of possibilities for calculation and correction of the values of K_{i} and K_{a} constants (Examples 1-4).

References

1. Krupyanko VI. A vector method of representation of enzymic reactions. 3. Three-dimensional system of the $\mathrm{K}_{\mathrm{m}}^{\prime} \mathrm{V}^{\prime} \mathrm{I}$ coordinates convenient for representation of enzyme inhibition and activation. Proc Biochem. 2004; 39: 825- 832. Ref.: https://goo.gl/dqMjBF
2. Krupyanko VI. Perspectives of Data Analysis of Enzyme Inhibition and Activation. Part 1: Use of the Three-Dimensional K ${ }_{\mathrm{m}} \mathrm{V}^{\prime}$ I Coordinate System for Data Analysis of Enzyme Inhibition and Activation. J Biochem Mol Toxicol. 2009; 23: 97-100. Ref.: https://goo.gl/BK2nqc
3. Krupyanko VI. Perspectives of Data Analysis of Enzyme Inhibition and Activation. Part 2: Parametrical Classification of Types of Enzymatic Reactions. J Biochem Mol Toxicol. 2009; 23: 101-107. Ref.: https://goo.gl/vRPeFp
4. Krupyanko VI. Perspectives of data analysis of enzyme inhibition and activation, Part 3: Equations for calculation of the initial rates of enzymatic reactions. J Biochem Mol Toxicol. 2009; 23: 108-118. Ref.: https://goo.gl/yyowYP
5. Krupyanko VI. Perspectives of Data Analysis of Enzyme Inhibition and Activation. Part 4: Equations for Calculation of Constants of Enzyme Activation and Inhibition. J Biochem Mol Toxicol. 2010; 24: 145-154. Ref.: https://goo.gl/F6m6Tf
6. Krupyanko VI. Determination of intensity of enzyme inhibition and activation. Eur Chem Bull. 2014; 3: 582-586. Ref.: https://goo.gl/RxX2M2
7. Krupyanko VI. Non-existence of secondary coordinates of intersects. Eur Chem Bull. 2014; 3: 815822. Ref.: https://goo.gl/i8qkUU
8. Krupyanko VI. Correction of Dixon Plots. Eur Chem Bull. 2015; 4: 142-153. Ref.: https://goo.gl/4bfDVP
9. Krupyanko VI. Correction of Data Analysis Equations Relating to Two-Substrate Enzyme Catalyzed Reactions. Eur Chem Bull. 2016; 5: 354-363. Ref.: https://goo.gl/5P9gDz
10. Webb L. Enzyme and metabolic inhibitors. Moscow: Mir Publishers. 1963; 6-862. Ref.: https://goo.gl/Ae4JrU
11. Segel IH. Enzyme kinetics. J Wiley: New York. 1975; 3-957. Ref.: https://goo.gl/A54Kz6
12. Dixon M, Webb EC. Enzymes. Moscow: Mir Publishers. 1982; 2: 3-481.
